Remote C-H Bond Functionalizations. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Remote C-H Bond Functionalizations - Группа авторов страница 15

Название: Remote C-H Bond Functionalizations

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9783527824144

isbn:

СКАЧАТЬ oxidation by bioinspired catalysis. Selective C–H oxidation is a routine task in biological system. The selectivity in enzymatic process is governed by the virtue of several interactions that enable the proper substrate trajectory and geometric orientation. Imitating such reactivity in laboratory synthesis is relatively challenging yet worthy to explore. Therefore, a persistent attempt to comprehend the mechanistic insight of biological reactivity and catalyst or ligand design was pronounced to furnish site selective functionalization of aliphatic substrate. A comprehensive survey on aliphatic C–H oxidation imparted by the bio‐inspired catalysis is outlined by Costas in Chapter 13.

      The endless curiosities of human mind are the key to the technological advancements and evolution. This eternal truth has remained the essence for every piece of advancement since ancient times and will continue to remain persistent till times eternity. Modernization of scientific research in organic chemistry genre has shaped up in the form of C–H activation based protocols that has fostered a novel dimension in synthetic prospects and restructured the temperament of the scientific fraternity accordingly. This book besides providing a comprehensive scenario on the field of distal C–H activation also aims to inculcate cognizance among researchers of present and future generations to streamline and channelize their scientific understanding for the welfare of human civilization.

       Yuzhen Gaoand Gang Li

       State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 West Yang‐Qiao Road, Fuzhou, Fujian, 350002, China

H bonds with similar reactivity in an organic molecule. Notably, meta‐selectivity in C–H functionalization of arenes is one of the intriguing site selectivities that have been intensely studied in recent years [1–10]. Although thousands of methods for ortho‐C–H functionalizations of arenes via proximity‐induced cyclometallation have been reported, only a limited number of approaches have been disclosed in meta‐C–H functionalizations of arenes. One of the representative approaches of meta‐C–H functionalization of arenes is the directing template assisted remote meta‐C–H functionalizations of arenes via geometry‐induced metalation (Scheme 2.1a) [5–10].

H bond, leading to a high effective concentration of the Pd(II) catalyst at the target meta‐C
H bond without forming an 11‐ or 12‐membered cyclophane‐like palladacycle.

H bond functionalization. Related reviews:

      (a) Li et al. [5], Yang [6], Chattopadhyay and Bisht [7], Dey et al. [8], Ghosh and De Sarkar [9], and Dey et al. [10]; Source: (b) Modified from Leow et al. [11].

H bond is usually 10–12 atoms away from the chelating atom of the template (Scheme 2.1b,d), although longer length was also possible. To date, three categories of CFs have been engineered including two nitrogen‐based CN‐containing (Scheme 2.2a) or heteroarene‐containing (Scheme 2.2b) CFs and one oxygen‐based CO2H‐containing CF (Scheme 2.2c). It should be noted that besides these three CFs that covalently attached to the substrate, two catalytic bifunctional templates that reversibly coordinate to the substrate were also reported recently and they are not classified in these categories [12,13]. Another key feature of these reactions is that hexafluoroisopropanol (HFIP), which could also be used as an additive, appears to be the privileged solvent. Finally, N‐acetyl glycine (Ac‐Gly‐OH), a mono‐N‐protected amino acid (MPAA), is often the ligand of choice for many of these reactions, although other MPAA ligands could also be utilized in some cases.

Molecular structure depicts the three categories of chelating functionality. (a) N-Based CN-containing CF, (b) N-based heteroarene-containing CF, (c) O-based CO2H-containing CF.