Название: Analysis and Control of Electric Drives
Автор: Ned Mohan
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119584551
isbn:
Fig. 2-3 Motion of a mass M due to the action of forces.
This movement is opposed by the load, represented by a force fL. The linear momentum associated with the mass is defined as M × u. As shown in Fig. 2-3b, in accordance with Newton’s Law of Motion, the net force fM(=fe − fL) equals the rate of change of momentum, which causes the mass to accelerate:
where a is the acceleration in m/s2, which from Eq. (2-1) is
(2-2)
In MKS units, a net force of 1 Newton (or 1 N), acting on a constant mass of 1 kg, results in an acceleration of 1 m/s2. Integrating the acceleration with respect to time, we can calculate the speed as
(2-3)
and, integrating the speed with respect to time, we can calculate the position as
(2-4)
where τ is a variable of integration.
The differential work dW done by the mechanism supplying the force fe is
Power is the time‐rate at which the work is done. Therefore, differentiating both sides of Eq. (2-5) with respect to time t, and assuming that the force fe remains constant, the power supplied by the mechanism exerting the force fe is
It takes a finite amount of energy to bring a mass to a speed from rest. Therefore, a moving mass has stored kinetic energy that can be recovered. Note that in the system of Fig. 2-3, the net force fM(=fe − fL) is responsible for accelerating the mass. Therefore, assuming that fM remains constant, the net power pM(t) going into accelerating the mass can be calculated by replacing fe in Eq. (2-6) with fM:
(2-7)
From Eq. (2-1), substituting fM as
The energy input, which is stored as kinetic energy in the moving mass, can be calculated by integrating both sides of Eq. (2-8) with respect to time. Assuming the initial speed u to be zero at time t = 0, the stored kinetic energy in the mass M can be calculated as
(2-9)
where τ is a variable of integration.
2‐3 ROTATING SYSTEMS
Most electric motors are of a rotating type. Consider a lever, pivoted and free to move as shown in Fig. 2-4a. When an external force f is applied in a perpendicular direction at a radius r from the pivot, then the torque acting on the lever is
which acts in a counterclockwise direction, considered here to be positive.
EXAMPLE 2‐1
In Fig. 2-4a, a mass M is hung from the tip of the lever. Calculate the holding torque required to keep the lever from turning, as a function of angle θ in the range of 0–90°. Assume that M = 0.5 kg and r = 0.3 m.
Solution
The gravitational force on the mass is shown in Fig. 2-4b. For the lever to be stationary, the net force perpendicular to the lever must be zero, i.e. f = M g cos β where g = 9.8 m/s2 is the gravitational acceleration. Note in Fig. 2-4b that β = θ. The holding torque Th must be Th = f r = M g r cos θ. Substituting the numerical values,
Fig. 2-4 (a) Pivoted lever and (b) holding torque for the lever.
In electric machines, the various forces shown by arrows in Fig. 2-5 are produced due to electromagnetic interactions. The definition of torque in Eq. (2-10) correctly describes the resulting electromagnetic torque Tem that causes the rotation of the motor and the mechanical load connected to it by a shaft.