EXTREMOPHILES as Astrobiological Models. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу EXTREMOPHILES as Astrobiological Models - Группа авторов страница 25

Название: EXTREMOPHILES as Astrobiological Models

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119593102

isbn:

СКАЧАТЬ secondary minerals along the river, but it has also posed new ones, such as the paradox of the unexpectedly high level of diverse complex eukaryotic microorganisms or the need to explain the detection of functional activities in non-permissive environmental conditions, all of which are of astrobiological interest. The discovery of Noachian iron lithological units on Mars, similar to those produced biologically in the Tinto basin, have given Rio Tinto the status of geochemical and mineralogical terrestrial analogue that can lead to a more detailed vision of the possible geomicrobiological processes that may have driven the generation of iron oxides and sulfates on Mars.

      2.1. Aguilera, A. and Amils, R., Tolerance to cadmium in Chlamydomonas sp. (Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain). Aquat. Toxicol., 75, 316–329, 2005.

      2.2. Aguilera, A., Manrubia, S.C., Gómez, F., Rodríguez, N., Amils, R., Eukaryotic community distribution and its relationship to water physicochemical parameters in an extreme acidic environment, Río Tinto (Southwestern Spain). Appl. Environ. Microbiol., 72, 5325–5330, 2006.

      2.3. Aguilera, A., Eukaryotic organisms in extreme acidic environments, the Río Tinto case. Life, 3, 363–374, 2013.

      2.4. Aguilera, A., Olsson, S., Puente-Sánchez, F., Physiological and phylogenetic diversity in acidophilic eukaryotes, in: Acidophiles: Life in Extremely Acidic Conditions, B. Johnson and R. Quatrini (Eds.), pp. 107–118, Caister Academic Press, UK, 2016.

      2.5. Amaral-Zettler, L.A., Gómez, F., Zettler, E., Keenan, B.G., Amils, R., Sogin, M.L., Eukaryotic diversity in Spain’s River of Fire. Nature, 417, 137, 2002.

      2.6. Amaral-Zettler, L., Zettler, E.R., Theroux, S.M., Palacios, C., Aguilera, A., Amils, R., Microbial community structure across the tree of life in the extreme Río Tinto. ISME J., 5, 1, 42–50, 2010.

      2.7. Amils, R., González-Toril, E., Gómez, F., Fernández-Remolar, D., Rodríguez, N., Malki, M., Zuluaga, J., Aguilera, A., Amaral-Zettler, L.A., Importance of chemolithotrophy for early life on Earth: The Tinto River (Iberian Pyritic Belt) case, in: Origins, J. Seckbach (Ed.), pp. 463–480, Kluwer Academic Publishers, Amsterdam, NL, 2004.

      2.8. Amils, R., González-Toril, E., Fernández-Remolar, D., Gómez, F., Aguilera, A., Rodríguez, N., Malki, M., García-Moyano, A., González-Fairén, A., de la Fuente, V., Sanz, J.L., Extreme environments as Mars terrestrial analogs: The Río Tinto case. Planet. Space Sci., 55, 370–381, 2007.

      2.9. Amils, R., Fernández-Remolar, D., Gómez, F., González-Toril, E., Rodríguez, N., Briones, C., Prieto-Ballesteros, O., Sanz, J.L., Díaz, E., Stevens, T.O. et al., Subsurface geomicrobiology of the Iberian Pyritic Belt, in: Microbiology of Extreme Soils [Volume 13 in the series: Soil Biology], P. Dion and C.S. Nautiyal (Eds.), pp. 205–223, Springer-Verlag, Berlin, GE, 2008.

      2.11. Amils, R., Fernández-Remolar, D., the IPBSL Team, Río Tinto: A geochemical and mineralogical terrestrial analogue of Mars. Life, 4, 511–534, 2014.

      2.12. Amils, R., Lessons learned from thirty years of geomicrobiological studies of Río Tinto. Res. Microbiol., 167, 7, 539–545, 2016.

      2.13. Amils, R. and Fernández-Remolar, D., Acidophiles and Astrobiology, in: Acidophiles, Life in Extremely Acidic Conditions, B. Johnson and R. Quatrini (Eds.), pp. 285–300, Caister Academic Press, UK, 2016.

      2.14. Archibald, F., Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol. Lett., 19, 29–32, 1983.

      2.15. Bachofen, R., Ferloni, P., Flynn, L., Review: Microorganisms in the subsurface. Microbiol. Res., 153, 1–22, 1998.

      2.16. Benz, M., Brune, A., Schink, B., Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Arch. Microbiol., 169, 159–165, 1998.

      2.17. Boulter, C.A., Did both extensional tectonics and magmas act as major drivers of convection cells during the formation of the Iberian Pyrite Belt massive sulphide deposits? J. Geol. Soc. London, 153, 181–184, 1996.

      2.18. Boyd, W.P., Watson, A.J., Law, C.S., Abraham, E.R., Trull, T., Murdoch, R., Bakker, D.C., Bowie, A.R., Buesseler, K.O., Chang, H. et al., A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407, 695–702, 2005.

      2.19. Braun, V. and Killmann, H., Bacterial solution to the iron.supply problems. Trends Biochem. Sci., 24, 104–109, 1999.

      2.20. Carlson, H.K., Clark, I.C., Blazewicz, S.J., Iavarone, A.T., Coates, J.D., Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. J. Bacteriol., 195, 3260–3268, 2013.

      2.21. Chapelle, F.H., O´Nelly, K., Bradley, P.M., Methé, B.A., Ciufo, S.A., Knobel, L.L., Lovley, D.R., A hydrogen-based subsurface microbial community dominated by methanogens. Nature, 415, 312–314, 2002.

      2.22. Colín-García, M., Kanawati, B., Harir, M., Schmidt-Kopplin, P., Amils, R., Parro, V., García, M., Fernández-Remolar, D., Detection of peptidic sequences in the ancient acidic sediments of Río Tinto, Spain. Orig. Life Evol. Biosph., 41, 523–527, 2011.

      2.23. Colmer, A.R., Temple, K.L., Hinkle, H.E., An iron-oxidizing bacterium from the acid drainage of some bituminous coal mines. J. Bacteriol., 59, 317–328, 1950.

      2.24. Christensen, P.R., Bandfield, J.L., Clark, R.N., Edgett, K.S., Hamilton, V.E., Hoefen, T., Kieffer, H.H., Kuzmin, R.O., Lane, M.D., Malin, M.C. et al., Detection of cristaline hematite mineralization on Mars by the thermal emission spectrometer: Evidence for near-surface water. J. Geophys. Res., 104, 9623–9642, 2000.

      2.25. Christensen, P.R., Morris, R.V., Lane, M.D., Banfield, J.L., Malin, M.C., Global mapping of martian hematite mineral deposits: Remnants of water-driven processes on early Mars. J. Geophys. Res., 106, 23873–23885, 2001.

      2.26. Darwin, C., Voyages of the Adventure and Beagle, in: Volume III, Journal and remarks, pp. 1832–1836, Henry Colburn, London, UK, 1839.

      2.27. Davis, Welty, A.T., Borrego, J., Morales, J.A., Pendon, J.G., Ryan, J.G., Río Tinto estuary (Spain): 5000 years of pollution. Environ. Geol., 39, 1107–1116, 2000.

      2.28. Ehlmann, B.L., Mustard, J.F., Murchie, S.L., Poulet, F., Bishop, J.L., Brown, A.J., Calvin, W.M., Clark, R.N., Marais, D.J.D., Milliken, R.E. et al., Orbital Identification of Carbonate-Bearing Rocks on Mars. Science, 322, 1828–1832, 2008.

      2.30. Ehrlich, H.L., Newman, D.K., Kappler, A., Ehrlich’s Geomicrobiology, 6th edition, CRC, Boca Ratón, USA, 2015.

      2.31. Escudero, C., Vera, M., Oggerin, M., Amils, R., Active microbial biofilms in deep continental subsurface poor porous rock samples from the Iberian СКАЧАТЬ