Biopolymers for Biomedical and Biotechnological Applications. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Biopolymers for Biomedical and Biotechnological Applications - Группа авторов страница 9

Название: Biopolymers for Biomedical and Biotechnological Applications

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9783527818303

isbn:

СКАЧАТЬ

      The risks identified by ISO 10993‐1, Annex A (outlined for the two devices in Table 1.1), are not necessarily all‐inclusive or exhaustive. The spirit of the document is to provide a starting point and basis for a biological evaluation; if other potential biological or toxicological risks are known through clinical experience, those would also need to be addressed. For instance, if a medical instrument is known or has been shown to chip during a surgical procedure, leaving fragments of the device possibly permanently in the patient, this should be addressed in the biocompatibility assessment.

      It should also be recognized that the risks identified by Annex A are not highlighted in the standard as an explicit “checklist for testing.” Fortunately, the latest ISO 10993‐1 released in 2018 more clearly defines this statement within the document. Based on the updated verbiage in the standard, each of the biological risks (or endpoints) can be evaluated using a risk‐based approach, taking into consideration chemical and material information, existing endpoint‐specific data, or a written rationale why testing or further data is not needed to address a particular risk. In any case, the biocompatibility of a device or material must be spelled out, addressing directly each of the specific risk identified, mitigating concern through testing results or written evaluation in a biological risk assessment.

      The shift from check‐listing tests to a risk‐based approach has been motivated by several factors:

       Consideration of animal welfare, with a charge to reduce animal testing as much as possible

       A broader and better consolidated body of data on materials and toxicology

       Better analytical chemistry tools to evaluate manufacturing residuals, material leachables, and degradation products

      Knowing that the key is to protect patient safety by proving biocompatibility of a device to the skeptical reviewer while at the same time avoiding as much unnecessary testing as possible is the heart of evaluating biocompatibility using a risk‐based approach. There is an art to a biocompatibility evaluation, balancing commonsense measures to ensure safety with currently available data on one hand and the expectations of regulatory bodies across the spectrum on the other. Understanding the role the material information has and how this broadly impacts the testing strategy (along with the cost and time burden of testing) is central to the strategy.

      In the best case, material information and written assessment alone can be sufficient to mitigate and address all of the biological risks associated with a device. To be convincing, however, a great deal of detail is needed. Often, the question of biocompatibility is not about the bulk material itself at all, but rather about the processing of that material that takes place both upstream and downstream. Consider a polycaprolactone (PCL) implant, manufactured using 3D printing from a powder starting material. To the manufacturer, the name PCL along with its assigned chemical abstracts service (CAS) number defines the material. But there are many ways to synthesize PCL [4] that may influence its safety profile in terms of impurities that (while not obvious from bulk properties) will affect toxicology. Consider the PCL pipeline upstream from the device manufacturer:

      1 Preparation of the monomer (either ε‐caprolactone or 6‐hydroxycaproic acid) at raw chemical supplier:ε‐Caprolactone and 6‐hydroxycaproic acid may be produced naturally by oxidation of cyclohexanol by microorganisms and then harvested and purified (all steps removing or introducing impurities to varying degrees).ε‐Caprolactone can also be produced industrially through a reaction of cyclohexanone with peracetic acid.

      2 The monomer is purified, packaged, sold, and shipped to the maker of the polymer without knowledge that the monomer will end up in a medical device:Purity and performance metrics are based on bulk properties (not toxicological endpoints).

      3 The monomer is polymerized by another manufacturer:Polymerization occurs using a variety of different possible techniques, using different activators and/or catalysts, several of which are complex organometallic complexes of questionable safety (see, for example, those contained in Ref. [4]).

      4 The polymer is powdered and purified by the manufacturer using a proprietary cryogenic process.

      Most (or all) of the details of the upstream process are unknown to the medical device manufacturer, yet they can impact device safety. It could matter, from a toxicological perspective, if the PCL in a device is manufactured using lithium diisopropylamide or tert‐butoxy potassium as a catalyst. If the device manufacturer were to ask their polymer supplier what catalyst or what monomer is used and the method of manufacture, the information is likely considered intellectual property, and medical device manufacturers are typically not big enough customers of polymer manufacturers to be able to make demands. Therefore, in these cases, it is up to the device manufacturer to prove the biocompatibility of their materials acknowledging that very little is known about the impurity profile of their device.

      1.3.1 Chemistry of Biopolymers and Risk

Classification Example biopolymer Notes on production Risks
Polysaccharides Hyaluronic acid, HA (polymer of D‐glucuronic acid and N‐acetylglucosamine) Primarily produced using bacteria СКАЧАТЬ