Название: The Rheology Handbook
Автор: Thomas Mezger
Издательство: Readbox publishing GmbH
Жанр: Химия
isbn: 9783866305366
isbn:
9 8 Oscillatory tests 8.1 Introduction 8.2 Basic principles 8.2.1 Ideal-elastic behavior 8.2.2 Ideal-viscous behavior 8.2.3 Viscoelastic behavior 8.2.4 Definition of terms 8.2.5 The test modes controlled shear strain and controlled shear stress, raw data and rheological parameters 8.3 Amplitude sweeps 8.3.1 Description of the test 8.3.2 Limiting value of the LVE range 8.3.3 Determination of the yield point and the flow point by amplitude sweeps 8.3.4 Frequency-dependence of amplitude sweeps 8.3.5 SAOS and LAOS tests, and Lissajous diagrams 8.4 Frequency sweeps 8.4.1 Description of the test 8.4.2 Behavior of uncrosslinked polymers (solutions and melts) 8.4.3 Behavior of crosslinked polymers 8.4.4 Behavior of dispersions and gels 8.4.5 Comparison of superstructures using frequency sweeps 8.4.6 Multiwave test 8.4.7 Data conversion 8.5 Time-dependent behavior at constant dynamic-mechanical and isothermal conditions 8.5.1 Description of the test 8.5.2 Time-dependent behavior of samples showing no hardening 8.5.3 Time-dependent behavior of samples showing hardening 8.6 Temperature-dependent behavior at constant dynamic mechanical conditions 8.6.1 Description of the test 8.6.2 Temperature-dependent behavior of samples showing no hardening 8.6.3 Temperature-dependent behavior of samples showing hardening 8.6.4 Thermoanalysis (TA) 8.7 Time/temperature shift 8.7.1 Temperature shift factor according to the WLF method 8.8 The Cox/Merz relation 8.9 Combined rotational and oscillatory tests 8.9.1 Presetting rotation and oscillation in series 8.9.2 Superposition of oscillation and rotation 8.10 References
10 9 Complex behavior, surfactant systems 9.1 Surfactant systems 9.1.1 Surfactant structures and micelles 9.1.2 Emulsions 9.1.3 Mixtures of surfactants and polymers, polymers containing surfactant components 9.1.4 Applications of surfactant systems 9.2 Rheological behavior of surfactant systems 9.2.1 Typical shear behavior 9.2.2 Shear-induced effects, shear-banding and “rheo chaos ” 9.3 References
11 10 Measuring systems 10.1 Introduction 10.2 Concentric cylinder measuring systems (CC MS) 10.2.1 Cylinder measuring systems in general 10.2.2 Narrow-gap concentric cylinder measuring systems according to ISO 3219 10.2.3 Double-gap measuring systems (DG MS) 10.2.4 High-shear cylinder measuring systems (HS MS) 10.3 Cone-and-plate measuring systems(CP MS) 10.3.1 Geometry 10.3.2 Calculations 10.3.3 Conversion between raw data and rheological parameters 10.3.4 Flow instabilities and secondary flow effects in CP systems 10.3.5 Cone truncation and gap setting 10.3.6 Maximum particle size 10.3.7 Filling of the cone-and-plate measuring system 10.3.8 Advantages and disadvantages of cone-and-platemeasuring systems 10.4 Parallel-plate measuring systems(PP MS) 10.4.1 Geometry 10.4.2 Calculations 10.4.3 Conversion between raw data and rheological parameters 10.4.4 Flow instabilities and secondary flow effects in a PP system 10.4.5 Recommendations for gap setting 10.4.6 Automatic gap setting and automatic gap controlusing the normal force control option СКАЧАТЬ