Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность. Бен Орлин
Чтение книги онлайн.

Читать онлайн книгу Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность - Бен Орлин страница 12

СКАЧАТЬ шаги от излишних, пойти напрямик и сократить нудное 120-страничное доказательство до цельного десятистраничного.

      В 1920-е годы алгебра, вероятно, была самой скучной из всех отраслей математики[37]. Заниматься алгеброй означало увязнуть в трясине мелочей, угодить в терновый куст громоздких технических формальностей, в дисциплину деталей.

      И вот в 1921 году математик по имени Эмми Нётер[38] опубликовала статью под названием «Теория идеалов в кольцевых областях». Забрезжила заря новой эпохи. Позже ее коллега сказал, что это рассвет «абстрактной алгебры как осознанной дисциплины». Нётер не была заинтересована в распутывании конкретных числовых схем. На самом деле она отложила саму идею числá в сторону. Для нее имели значение только симметрия и структура. «Она учила нас думать, пользуясь простыми и, соответственно, общими терминами, – вспоминал впоследствии один из ее коллег. – Поэтому она открыла путь к выявлению алгебраических закономерностей там, где раньше закономерности не были ясны».

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

      Сноски

      1

      Термин теории игр. Выигрыш одного игрока равен проигрышу другого. Простейший пример – игра в орлянку. Строго говоря, уроки математики не являются такой игрой: все ученики могут одновременно получить высший балл и «выиграть» (или наоборот), хотя, конечно, это крайне маловероятно. – Прим. пер.

      2

      Происхождение этой игры теряется в тумане. Возможно, впервые ее правила были изложены в журнале Games в конце 1990-х или начале 2000-х (хотя на мой запрос сотрудники редакции ответили, что никогда не слышали об этой игре). В 2009-м версия под названием «Тик-так-ку» (с фишками на деревянной доске) завоевала премию Менсы за лучшую американскую настольную игру. Возможно, эту игру независимо придумывали несколько раз, как некоторые танцы или дифференциальное исчисление.

      3

      Когда я впервые продемонстрировал эту игру моим ученикам в Оклендской чартерной средней школе (Oakland Charter High School) в 2012 году, они-то и окрестили ее «жесткие крестики-нолики» (Ultimate Tic-Tac-Toe). Мой пост в блоге с таким заголовком вызвал всплеск популярности: статью в «Википедии», несколько научных статей и множество мобильных приложений. Мораль: гордитесь, матадоры! Вы придумали название для этой штуковины.

      4

      Я благодарен Марку Торнтону, который прочел черновик этой главы и задал в точности тот же самый вопрос. Правки Майка сродни текстам песен Леонарда Коэна или прозе Хемингуэя: СКАЧАТЬ



<p>37</p>

Israel Kleiner, “Emmy Noether and the Advent of Abstract Algebra,” A History of Abstract Algebra (Boston: Birkhäuser, 2007), 91–102, https://link.springer.com/chapter/10.1007/978-0-8176-4685-1_6#page-2. Я исказил аргумент Клейнера; ключевая идея в том, что в XIX веке удалось добиться больших успехов в геометрии и математическом анализе, но алгебра оставалась в первозданном закостенелом состоянии.

<p>38</p>

Joaquin Navarro, Women in Maths: From Hypatia to Emmy Noether. Everything is Mathematical (Spain: R. B. A. Coleccionables, S. A., 2013) [Наварро Х. Женщины-математики: от Гипатии до Эмми Нётер. Вып. 37. 2014. – (Сер.: Мир математики).]