The Henri Bergson Megapack. Henri Bergson
Чтение книги онлайн.

Читать онлайн книгу The Henri Bergson Megapack - Henri Bergson страница 11

Название: The Henri Bergson Megapack

Автор: Henri Bergson

Издательство: Ingram

Жанр: Учебная литература

Серия:

isbn: 9781479403028

isbn:

СКАЧАТЬ the straight line, as you please, for in each of its points a curve coincides with its tangent. So likewise “vitality” is tangent, at any and every point, to physical and chemical forces; but such points are, as a fact, only views taken by a mind which imagines stops at various moments of the movement that generates the curve. In reality, life is no more made of physico-chemical elements than a curve is composed of straight lines.

      In a general way, the most radical progress a science can achieve is the working of the completed results into a new scheme of the whole, by relation to which they become instantaneous and motionless views taken at intervals along the continuity of a movement. Such, for example, is the relation of modern to ancient geometry. The latter, purely static, worked with figures drawn once for all; the former studies the varying of a function—that is, the continuous movement by which the figure is described. No doubt, for greater strictness, all considerations of motion may be eliminated from mathematical processes; but the introduction of motion into the genesis of figures is nevertheless the origin of modern mathematics. We believe that if biology could ever get as close to its object as mathematics does to its own, it would become, to the physics and chemistry of organized bodies, what the mathematics of the moderns has proved to be in relation to ancient geometry. The wholly superficial displacements of masses and molecules studied in physics and chemistry would become, by relation to that inner vital movement (which is transformation and not translation) what the position of a moving object is to the movement of that object in space. And, so far as we can see, the procedure by which we should then pass from the definition of a certain vital action to the system of physico-chemical facts which it implies would be like passing from the function to its derivative, from the equation of the curve (i.e. the law of the continuous movement by which the curve is generated) to the equation of the tangent giving its instantaneous direction. Such a science would be a mechanics of transformation, of which our mechanics of translation would become a particular case, a simplification, a projection on the plane of pure quantity. And just as an infinity of functions have the same differential, these functions differing from each other by a constant, so perhaps the integration of the physico-chemical elements of properly vital action might determine that action only in part—a part would be left to indetermination. But such an integration can be no more than dreamed of; we do not pretend that the dream will ever be realized. We are only trying, by carrying a certain comparison as far as possible, to show up to what point our theory goes along with pure mechanism, and where they part company.

      Imitation of the living by the unorganized may, however, go a good way. Not only does chemistry make organic syntheses, but we have succeeded in reproducing artificially the external appearance of certain facts of organization, such as indirect cell-division and protoplasmic circulation. It is well known that the protoplasm of the cell effects various movements within its envelope; on the other hand, indirect cell-division is the outcome of very complex operations, some involving the nucleus and others the cytoplasm. These latter commence by the doubling of the centrosome, a small spherical body alongside the nucleus. The two centrosomes thus obtained draw apart, attract the broken and doubled ends of the filament of which the original nucleus mainly consisted, and join them to form two fresh nuclei about which the two new cells are constructed which will succeed the first. Now, in their broad lines and in their external appearance, some at least of these operations have been successfully imitated. If some sugar or table salt is pulverized and some very old oil is added, and a drop of the mixture is observed under the microscope, a froth of alveolar structure is seen whose configuration is like that of protoplasm, according to certain theories, and in which movements take place which are decidedly like those of protoplasmic circulation.[12] If, in a froth of the same kind, the air is extracted from an alveolus, a cone of attraction is seen to form, like those about the centrosomes which result in the division of the nucleus.[13] Even the external motions of a unicellular organism—of an amoeba, at any rate—are sometimes explained mechanically. The displacements of an amoeba in a drop of water would be comparable to the motion to and fro of a grain of dust in a draughty room. Its mass is all the time absorbing certain soluble matters contained in the surrounding water, and giving back to it certain others; these continual exchanges, like those between two vessels separated by a porous partition, would create an everchanging vortex around the little organism. As for the temporary prolongations or pseudopodia which the amoeba seems to make, they would be not so much given out by it as attracted from it by a kind of inhalation or suction of the surrounding medium.[14] In the same way we may perhaps come to explain the more complex movements which the Infusorian makes with its vibratory cilia, which, moreover, are probably only fixed pseudopodia.

      But scientists are far from agreed on the value of explanations and schemas of this sort. Chemists have pointed out that even in the organic—not to go so far as the organized—science has reconstructed hitherto nothing but waste products of vital activity; the peculiarly active plastic substances obstinately defy synthesis. One of the most notable naturalists of our time has insisted on the opposition of two orders of phenomena observed in living tissues, anagenesis and katagenesis. The rôle of the anagenetic energies is to raise the inferior energies to their own level by assimilating inorganic substances. They construct the tissues. On the other hand, the actual functioning of life (excepting, of course, assimilation, growth, and reproduction) is of the katagenetic order, exhibiting the fall, not the rise, of energy. It is only with these facts of katagenetic order that physico-chemistry deals—that is, in short, with the dead and not with the living.[15] The other kind of facts certainly seem to defy physico-chemical analysis, even if they are not anagenetic in the proper sense of the word. As for the artificial imitation of the outward appearance of protoplasm, should a real theoretic importance be attached to this when the question of the physical framework of protoplasm is not yet settled? We are still further from compounding protoplasm chemically. Finally, a physico-chemical explanation of the motions of the amoeba, and a fortiori of the behavior of the Infusoria, seems impossible to many of those who have closely observed these rudimentary organisms. Even in these humblest manifestations of life they discover traces of an effective psychological activity.[16] But instructive above all is the fact that the tendency to explain everything by physics and chemistry is discouraged rather than strengthened by deep study of histological phenomena. Such is the conclusion of the truly admirable book which the histologist E.B. Wilson has devoted to the development of the cell: “The study of the cell has, on the whole, seemed to widen rather than to narrow the enormous gap that separates even the lowest forms of life from the inorganic world.[17]”

      To sum up, those who are concerned only with the functional activity of the living being are inclined to believe that physics and chemistry will give us the key to biological processes.[18] They have chiefly to do, as a fact, with phenomena that are repeated continually in the living being, as in a chemical retort. This explains, in some measure, the mechanistic tendencies of physiology. On the contrary, those whose attention is concentrated on the minute structure of living tissues, on their genesis and evolution, histologists and embryogenists on the one hand, naturalists on the other, are interested in the retort itself, not merely in its contents. They find that this retort creates its own form through a unique series of acts that really constitute a history. Thus, histologists, embryogenists, and naturalists believe far less readily than physiologists in the physico-chemical character of vital actions.

      The fact is, neither one nor the other of these two theories, neither that which affirms nor that which denies the possibility of chemically producing an elementary organism, can claim the authority of experiment. They are both unverifiable, the former because science has not yet advanced a step toward the chemical synthesis of a living substance, the second because there is no conceivable way of proving experimentally the impossibility of a fact. But we have set forth the theoretical reasons which prevent us from likening the living being, a system closed off by nature, to the systems which our science isolates. These reasons have less force, we acknowledge, in the case of a rudimentary organism like the amoeba, which hardly evolves at all. But they acquire more when we consider a complex organism which goes through a regular cycle of transformations. The more duration marks the living being with its imprint, the more obviously the organism differs from a mere mechanism, over which duration glides without penetrating. And the demonstration has most force when it applies to the evolution of life as a whole, from its humblest origins to СКАЧАТЬ