Название: Видатні наукові відкриття. Дитяча енциклопедія
Автор: Отсутствует
Жанр: Учебная литература
isbn: 966-03-3592-X
isbn:
Наукову діяльність Ньютона можна поділити на три періоди. В 1665–1667 роках він натхненно працював, відкриваючи основні закони природи й математики. Вже в 27 років професор Ньютон став визнаним «королем математиків і фізиків». Наступні 20 років він присвятив строгому доведенню відкритих ним законів, розрахунку найважливіших задач (включаючи рух Місяця й планет) і написанню своєї головної книги: «Математичні принципи філософії природи». В останні 40 років життя Ньютон мало займався наукою: він лише публікував раніше підготовлені ним книги, часом відволікаючись на розв’язування особливо важкої й цікавої задачі за допомогою математичного аналізу.
Розробка диференціального й інтегрального числень стала важливим етапом у розвитку математики. Велике значення мали роботи Ньютона з алгебри, інтерполяції й геометрії. Завдяки йому алгебра остаточно звільнилася від геометричної форми; і його визначення числа не як зібрання одиниць, а як відношення довжини будь-якого відрізка до довжини відрізка, прийнятого за одиницю, стало важливим етапом у розвитку вчення про дійсне число.
Ньютон створив свій метод, опираючись на колишні відкриття, зроблені ним у галузі аналізу, але в найголовнішому питанні він звернувся по допомогу до геометрії й механіки.
Коли саме Ньютон відкрив свій новий метод, достеменно невідомо. Зважаючи на тісний зв’язок цього способу з теорією тяжіння, можна припустити, що це відбулось між 1666 і 1669 роками, але в усякому разі раніше перших відкриттів, зроблених у цій галузі Лейбніцем. Математику Ньютон вважав основним інструментом фізичних досліджень і розробляв її для численних подальших додатків. Після тривалих міркувань він дійшов до обчислення нескінченно малих на основі концепції руху; математика для нього не була абстрактним продуктом людського розуму. Він вважав, що геометричні образи – лінії, поверхні, тіла – утворюються внаслідок руху: лінія – при русі точки, поверхня – при русі лінії, тіло – при русі поверхні. Ці рухи здійснюються в часі, і за будь-який малий час точка, наприклад, пройде будь-який малий шлях. Для визначення миттєвої швидкості, швидкості в даний момент, необхідно знайти відношення приросту шляху (за сучасною термінологією) до приросту часу, а потім – границі цього відношення, тобто взяти «останнє відношення», коли приріст часу прагне до нуля. Так Ньютон увів відшукання «останніх відношень», похідних, які він називав флюксіями.
Використання теореми про взаємну оборотність операцій диференціювання й інтегрування, про СКАЧАТЬ