Космос. Иллюстрированная история астрономии и космологии. Джон Норт
Чтение книги онлайн.

Читать онлайн книгу Космос. Иллюстрированная история астрономии и космологии - Джон Норт страница 45

СКАЧАТЬ приведенным на ил. 44.

      Этот красивый геометрический вывод, лишь отдаленно напоминающий описания, составленные Аристотелем и Симпликием, был не так уж и чужд рассматриваемой эпохе. Учитель Евдокса Архит, решая проблему удвоения куба, рассматривал пересечение трех поверхностей вращения – тора (якорного кольца), конуса и цилиндра. Те, кто считает, будто Евдокс не мог оказаться вне этого тренда, но не выражает желания рассуждать об этом в категориях трансцендентных кривых четвертого порядка, могли бы дополнить сферу и цилиндр еще одной простой поверхностью, где можно расположить гиппопеду. Это некая поверхность, постоянным сечением которой является парабола. (Представьте лист бумаги, согнутый таким образом, чтобы два его противоположных края образовывали две одинаковые параболы, тогда линия гиппопеды будет полностью лежать на этом листе.) У нас нет убедительных доказательств того, знал ли Евдокс об этом свойстве изобретенной им гиппопеды, однако то же самое может быть со всей строгостью применено и к сечению цилиндра. Исходно сам Евдокс, скорее всего, рассуждал именно в этих категориях, хотя, когда средневековые и ренессансные астрономы узнали о подобных моделях, они выказали их непонимание, во всяком случае в некоторых аспектах.

      44

      Вспомогательная схема, позволяющая понять геометрию гиппопеды. Диаграмма вписана в центральную плоскость ил. 43.

      Модель Евдокса оказалась столь значима в истории геометрической астрономии, что нам просто необходимо доказать ее хотя бы схематично для демонстрации элегантности астрономической доктрины, разработанной более двадцати трех столетий назад. Будем различать несущую и несомую сферы. На ил. 44 направление взгляда (сверху) совпадает с осью первой сферы и параллельно оси цилиндра, на поверхности которого находятся точки F, E и A. (Поучительно будет спросить, почему этот цилиндр не параллелен другой оси; или, например, не расположен симметрично между ними.) A – исходная точка планеты, а дуга AB – ее движение вдоль экватора несомой сферы за какое-то время. Если смотреть сверху, то он (экватор) будет казаться эллипсом, а угол AOB, как он виден на рисунке, – будет меньше реального трехмерного угла. На самом деле он равен изображенному на рисунке углу AOC, где C – это точка, отделившаяся от A в тот же момент времени, что и точка В, но движущаяся по другому кругу. Точки B и C, очевидно, будут располагаться на одном и том же уровне (CB образует перпендикуляр с OA). Рассмотрим теперь, как это составное движение планеты будет осуществляться во времени, если наблюдать за ним в плоскости диаграммы (то есть ортогональной проекции на эту плоскость). Планета движется вверх до точки B несомым движением и дополнительно поворачивается движением несущей сферы, осуществляющей перенос отрезка OB в OE; причем угол BOE равен углу AOC. Необходимо доказать, что точка E лежит на линии сечения цилиндра. Если угол CBD прямой, а точка D лежит на отрезке OC, то достаточно показать неизменность длины отрезка СКАЧАТЬ