Название: Загадки и диковинки в мире чисел
Автор: Яков Перельман
Жанр: Учебная литература
isbn: 978-5-17-056028-8, 978-5-271-22395-2
isbn:
10а + 10b + 25 – 5а – 5b + ab.
Но так как 10а – 5а = 5а, а 10b – 5b = 5b, то строка упрощается и получает вид:
25 + 5а + 5b + ab,
т. е. то же самое, что получилось бы от непосредственного умножения данных нам множителей (5 + а) и (5 + Ь):
(5 + а)(5 + Ь) = 25 + 5а + 5b + ab.
Короче, все действия на пальцах можно представить в общем виде так:
А это выражение, мы уже знаем, равно (5 + а) (5 + Ь).
Мы сказали в самом начале статьи, что умножение на пальцах можно выполнять до 15 × 15. Как же
это делается? Несколько иначе, чем умножение до 10 × 10. Пусть требуется умножить 12 × 14. Загибаем на руках избыток множителей над 10 (а не над 5, как раньше), т. е. на одной руке 2 пальца, на другой – 4. Складываем 2 + 4, приписываем нуль, прибавляем произведение тех же чисел 2 и 4 (а не чисел незагнутых пальцев) и, кроме того, во всех случаях прибавляем 100. Имеем:
12 × 14 = 100 + (2 + 4) 10 + 2 × 4 = 168.
Еще пример —11 × 13:
На чем основан этот прием? Обратимся снова к алгебре. Все случаи подобного умножения можно в общем виде изобразить так:
(10 + а) × (10 + Ь),
где а и b – числа, меньшие 5, – означают, сколько загнуто пальцев. Выполнив умножение по общим правилам, получим:
(10 + а) (10 + Ь) = 100 + 10 (а + b) + ab.
Из этой строки ясна правильность способа: сто + + сумма загнутых пальцев с приписанным нулем + произведение загнутых пальцев.
Любопытно, что произведение 10 × 10 можно получить на пальцах по обоим способам. Действительно, по первому имеем:
По второму способу:
Существует также прием умножения на пальцах чисел от 15 × 15 до 20 × 20, – но способ этот слишком уж сложен. Всякая счетная машина хороша, когда обращение с нею просто; наша природная десятипальцевая машина не составляет исключения из этого правила.
Механическое умножение на 9
Опишем еще – как интересный курьез – простой прием умножения однозначных чисел на 9. Пусть нужно умножить 7 × 9. Положите перед собою на стол рядом обе руки и загните 7-й палец, считая слева. Тогда перед вами налево 6 пальцев, направо – 3: искомое произведение 63.
При умножении 5 × 9 загибаем 5-й палец: имеем налево 4, направо – 5 пальцев; произведение 45.
Предоставляем читателю самому сообразить, на чем этот способ основан.
Глава III Потомок древнего абака
Чеховская задача
Всем, вероятно, памятна в своем роде знаменитая арифметическая задача, которая так смутила семиклассника Зиберова из чеховского рассказа «Репетитор».
Купец купил 138 аршин черного и синего сукна за 540 руб. Спрашивается, сколько аршин купил он того и другого, если синее стоило 5 руб. за аршин, а черное 3 руб.?
С тонким юмором описывает Чехов, как беспомощно трудились над этой задачей и семиклассник-репетитор, и его ученик, двенадцатилетний Петя, пока СКАЧАТЬ