Название: Алгебра. 9 класс. 50 типовых вариантов экзаменационных работ для подготовки к ГИА
Автор: Е. В. Неискашова
Жанр: Математика
isbn: 978-5-17-059843-4,978-5-271-24146-8
isbn:
3,5(2х − 1) − 1,4 × (5х + 2) при х = 112/33.
1) −6,3;
2) −0,7;
3) 0,7;
4) 6,3.
5. Составьте выражение для нахождения периметра (в см) равнобедренного треугольника, если известно, что длина его основания равна n см, а длина боковой стороны равна m см.
1) n + m;
2) n + 2m;
3) 2n + m;
4) n × m.
6. В каком случае выражение преобразовано в тождественно равное?
1) 2(х + у) = 2х + у;
2) (х + у)2 − (х − у)2 = 4ху;
3) (х + у)2 + (х − у)2 = х2 + у2;
4) (х − у)2 − 2ху = х2 + у2.
8. Найдите частное
Ответ запишите в виде десятичной дроби.
Ответ:____
9. Решите уравнение 3 − 2x = 6x − 4(x − 2).
Ответ:____
10. Прямая y = 2х + 1 пересекает параболу y = −x2 + 9 в двух точках. Вычислите координаты точки А.
Ответ:____
11. Прочитайте задачу: «Расстояние от пункта А до пункта В автомобиль проезжает с определенной скоростью за 2,5 часа. Если увеличить скорость этого автомобиля на 20 км/ч, то он за 2 часа проедет расстояние, которое на 15 км больше расстояния от пункта А до пункта В. Найдите расстояние между пунктами А и В.»
Выберите уравнение, соответствующее условию задачи, если буквой х обозначена скорость (в км/ч) автомобиля.
12. Решите неравенство 3х − 4(2х − 3) ≤ 13.
1) х ≤ −0,2;
2) х ≤ −5;
3) х >= −0,2;
4) х >= −5.
13. На рисунке изображен график функции у = 2х2 − 6х. Используя график, решите неравенство 2х2 − 6х < 0.
1) (−∞; 0);
2) (0; 3);
3) (3; +∞);
4) (−∞; 0)U(3; +∞).
14. Для каждой арифметической прогрессии, заданной a1 и d, укажите формулу ее n-го члена. (В таблице под каждой буквой запишите номер ответа, под которым указана соответствующая формула n-го члена арифметической прогрессии.)
А) a1 = 2, d = 3; Б) a1 = 3, d = 2; В) a1 = 1, d = 2.
1) an = 3n + 2;
2) an = 3n − 1;
3) an = 2n + 1;
4) an = 2n − 1.
15. График какой линейной функции изображен на рисунке?
1) y = −2x + 4;
2) y = 2х + 4;
3) y = 4х − 2;
4) y = 4х + 2.
16. В продажу выпустили новую модель телефона. На графиках показано, как эта модель продавалась в течение года в магазинах двух фирм сотовой связи А и В. (По горизонтальной оси откладывается время, прошедшее с начала продаж – в месяцах, а по вертикальной – число телефонов, проданных за это время – в тыс. шт.) Определите, сколько телефонов СКАЧАТЬ