Риск-менеджмент. Учебное пособие. Георгий Димитриади
Чтение книги онлайн.

Читать онлайн книгу Риск-менеджмент. Учебное пособие - Георгий Димитриади страница 7

СКАЧАТЬ на рисунок 1. Нарисуем допустимое множество портфелей, т.е. все портфели, которые можно составить из рассматриваемого множества ценных бумаг с заданными характеристиками (ожидаемой доходностью и стандартным отклонением) и заданными коэффициентами корреляции. Обратим внимание, что поскольку x1 , …, xN (доли активов в портфеле) – это числа, принимающие любые значения, лежащие между нулем и единицей, то количество портфелей, которое можно составить из данных активов, бесконечно велико.

      Пусть есть два объекта A и B, которые оцениваются по k критериям. Оценки объектов будут иметь вид a1…ak и b1…bk. По определению, объект А доминирует объект B по Парето (или по Эджворту-Парето, так как недавно обнаружили, что Эджворт ввел этот критерий раньше) или объект А сильно доминирует объект B, если оценки объекта A по всем критериям не хуже, чем оценки объекта B по всем критериям и хотя бы по одному критерию строго лучше, то есть

      (где знаки «>=» и «>» означают «не хуже» и «строго лучше» при сравнении оценок по критерию).

      Когда производится выбор из ряда альтернатив, оцениваемым по многим критериям, первым логичным шагом выбора всегда является их сравнение по Парето – ведь альтернатива, доминируемая по Парето заведомо хуже, чем доминирующая ее. Таким образом, перед тем, как производить дальнейшие действия, нужно выбрать из исходного множества альтернатив подмножество недоминируемых никакими другими по Парето и из них производить дальнейший выбор.

      Рассмотрим это на примере портфельной теории Марковица. Обратимся к допустимому множеству X. Выберем один из портфелей из «середки» этого множества (пусть это будет портфель A). Утверждение: этот портфель доминируется по Парето другими, у которых риск такой же, а доходность выше (например, портфель B), или доходность такая же, а риск ниже (например, портфель С), или риск ниже, а доходность выше (например, портфель D).

      Портфели, доминируемые по Парето, выбирать в качестве оптимальных не следует. Соответственно, первый этап решения инвестиционной задачи – отбросить варианты, доминируемые по Парето, то есть инвестиционные решения следует принимать только из портфелей эффективного множества. Эффективное множество – это множество портфелей из допустимого множества, не доминируемых по Парето никакими другими портфелями. На нашем рисунке они находятся левее и выше.

      Можно доказать, что в общем случае эффективное множество всегда выпукло вверх. Тогда оптимальное решение находится как точка касания кривой безразличия и эффективного множества.

      На этом мы закончим рассмотрение классической портфельной теории для целей изучения риска. Сделаем только еще одно замечание. В этой теории также вводится понятие безрискового актива, с которым связана теорема о том, что структура эффективного портфеля при наличии такого актива не будет зависеть от конкретного вида предпочтений инвестора.

      Остановимся на вопросе, что такое безрисковый актив: предположим, что у нас период инвестирования составляет один год. Рассмотрим разные бумаги, которые могут претендовать на роль безрискового актива. Обычно это бумаги Казначейства США, но с тем же успехом мы можем СКАЧАТЬ