Название: Риск-менеджмент. Учебное пособие
Автор: Георгий Димитриади
Издательство: ЛитРес: Самиздат
Жанр: Управление, подбор персонала
isbn:
isbn:
Последнее предположение является очень жестким, так как все статистические свойства случайной величины – доходности – сводятся только к математическому ожиданию и дисперсии (которая является мерой «разброса» данных относительно «среднего»), и инвестиционное решение принимается только на их основе. Таким образом, не учитываются особенности распределения случайной величины.
С точки зрения оценки риска у теории Марковица есть свои достоинства и недостатки.
Достоинства:
1. Если распределения доходности ценных бумаг симметричны и «близки» по форме, то среднеквадратичное отклонение s рассматривается как мера риска, так как отклонения в обе стороны, благоприятную и неблагоприятную, равны.
2. Теория вычислительно проста.
Недостатки теории:
1. Для нормального распределения s – хорошая мера разброса, а для прочих – плохая, риск оценивается неадекватно, с грубым приближением.
2. Эта мера разброса показывает отклонения в обе стороны, а нас интересует риск, то есть мера отклонения только в неблагоприятную сторону.
Рис. 1.
Нарисуем график, где на горизонтальной оси отложим стандартное отклонение s, на вертикальной – доходность r. При условии сделанного предположения для инвестора достаточно знания этих двух величин. Это значит, что портфель можно изобразить точкой, а инвестиционное решение должно приниматься на основании анализа допустимого множества портфелей и предпочтений инвестора.
В теории Марковица обычно считается, что инвестор, во-первых, обладает свойством ненасыщения, то есть таким свойством, что чем больше доходность инвестиционного портфеля, тем ему лучше при прочих равных условиях. Во-вторых, инвестор обладает свойством избегания риска, свойством несклонности к риску.
Бывает три вида инвесторов: склонных к риску, избегающих риска и нейтральных к риску. Рассмотрим честную игру. Бросая монетку, с вероятностью ½ мы либо получаем, либо платим одну денежную единицу. Математическое ожидание выигрыша равно нулю (½*(+1)+½*(-1)=0). Для инвестора, несклонного к риску, моральное удовлетворение от выигрыша в одну единицу будет меньше, чем разочарование от проигрыша. Хотя он знает, что в среднем получается ноль, он откажется от игры. Склонный к риску инвестор рассуждает ровно наоборот. Нейтральный к риску скажет, что ему все равно, играть, или не играть.
Для инвесторов, несклонных к риску и обладающим свойством ненасыщения, рассматриваемых в теории Марковица, кривые безразличия выглядят следующим образом: положительно наклоненные и выпуклые вниз.
Кривая безразличия – это множество портфелей, обладающих свойствами доходности и риска, полностью описываемыми величинами r и s, одинаковых для инвестора с точки зрения его предпочтения – инвестиционного выбора. Кривая безразличия положительно наклонена, так как считается, что больший риск должен компенсироваться большей доходностью. Аналогичный подход используется в теории полезности.
Кривые безразличия не пересекаются. Между любыми двумя можно нарисовать СКАЧАТЬ