Название: Wonders of the Universe
Автор: Andrew Cohen
Издательство: HarperCollins
Жанр: Прочая образовательная литература
isbn: 9780007413379
isbn:
These picture strips illustrate maps of the Milky Way Galaxy as they appear in different wavelength regions.
NASA
Maxwell’s equations had exactly the same form as the equations that describe how soundwaves move through air or how water waves move through the ocean.
THE RELATIONSHIP BETWEEN ELECTRICITY, MAGNETISM AND THE SPEED OF LIGHT IS SUMMARIZED IN THE EQUATION:
Where c is the speed of light and the quantities 0 and 0 are related to the strengths of electric and magnetic fields. The fact that the velocity of light can be measured experimentally on a bench top with wires and magnets was the key piece of evidence that light is an electromagnetic wave.
At this point you may be wondering what all this has to do with the story of light. Well, here is something profound that provides a glimpse into the true power and beauty of modern physics. In writing down his laws of electricity and magnetism using fields, Maxwell noticed that by using a bit of simple mathematics, he could rearrange his equations into a more compact and magically revealing form. His new equations took the form of what are known as wave equations. In other words, they had exactly the same form as the equations that describe how soundwaves move through air or how water waves move through the ocean. But waves of what? The waves Maxwell discovered were waves in the electric and magnetic fields themselves. His equations showed that as an electric field changes, it creates a changing magnetic field. But in turn as the magnetic field changes, it creates a changing electric field, which creates a changing magnetic field, and so on. In other words, once you’ve wiggled a few electric charges around to create a changing electric and magnetic field, you can take the charges away and the fields will continue sloshing around – as one falls, the other will rise. And this will continue to happen forever, as long as you do nothing to them.
This is profound in itself, but there is an extra, more profound conclusion. Maxwell’s equations also predict exactly how fast these waves must fly away from the electric charges that create them. The speed of the waves is the ratio of the strengths of the electric and magnetic fields – quantities that had been measured by Faraday, Ampère and others and were well known to Maxwell. When Maxwell did the sums, he must have fallen off his chair. He found that his equations predicted that the waves in the electric and magnetic fields travelled at the speed of light! In other words, Maxwell had discovered that light is nothing more than oscillating electric and magnetic fields, sloshing back and forth and propelling each other through space as they do so. How beautiful that the work of Faraday, Ampère and others with coils of wire and pieces of magnets could lead to such a profound conclusion through the use of a bit of mathematics and a sprinkling of Scottish genius! In modern language, we would say that light is an electromagnetic wave.
In order to have his epiphany, Maxwell needed to know exactly what the speed of light was. Remarkably, the fact that light travels very fast, but not infinitely so, had already been known for almost two hundred years. As we will discover now, it had first been measured by Ole Romer in 1676
CHASING THE SPEED OF LIGHT
Open your eyes and the world floods in; light seems to jump from object to retina, forming a picture of the world instantaneously. Light seems to travel infinitely fast, so it is no surprise that Aristotle and many other philosophers and scientists believed light travelled ‘without movement’. However, as the Greek philosophers gave more thought to the nature of light, a debate about its speed of travel ensued that continued for thousands of years.
In one corner sat eminent names such as Euclid, Kepler and Descartes, who all sided with Aristotle in believing that light travelled infinitely fast. In the other, Empedocles and Galileo, separated by almost two millennia, felt that light must travel at a finite, if extremely high, velocity. Empedocles’s reasoning was elegant, pre-dating Aristotle by a century. He considered light travelling across the vast distance from the Sun to Earth, and noted that everything that travels must move from one point to another. In other words, the light must be somewhere in the space between the Sun and the Earth after it leaves the Sun and before it reaches the Earth. This means it must travel with a finite velocity. Aristotle dismissed this argument by invoking his idea that light is simply a presence, not something that moves between things. Without experimental evidence, it is impossible to decide between these positions simply by thinking about it!
Galileo set out to measure the speed of light using two lamps. He held one and sent an assistant a large distance away with another. When they were in position, Galileo opened a shutter on his lamp, letting the light out. When his assistant saw the flash, he opened his shutter, and Galileo attempted to note down the time delay between the opening of his shutter and his observation of the flash from his assistant’s lamp. His conclusion was that light must travel extremely rapidly, because he was unable to determine its speed. Galileo was, however, able to put a ‘limit’ on the speed of light, noting that it must be at least ten times faster than the speed of sound. He was able to do this because if it had been slower, he should have been able to measure a time delay. So, the inability to measure the speed of light was not deemed a ‘no result’, but in fact revealed that light travels faster than his experiment could quantify.
The question, how fast is the speed of light, has plagued scientists for thousands of years. Part of the answer came from observing how light travels between points: from the Sun to Earth.
The first experimental determination that the speed of light was not infinite was made by the seventeenth-century Danish astronomer, Ole Romer. In 1676, Romer was attempting to solve one of the great scientific and engineering challenges of the age; telling the time at sea. Finding an accurate clock was essential to enable sailors to navigate safely across the oceans, but mechanical clocks based on pendulums or springs were not good at being bounced around on the ocean waves and soon drifted out of sync. In order to pinpoint your position on Earth you need the latitude and longitude. Latitude is easy; in the Northern Hemisphere, the angle of the North Star (Polaris) above the horizon is your latitude. In the Southern Hemisphere, things are more complicated because there is no star directly over the South Pole, but it is still possible with a little astronomical know-how and trigonometry to determine your latitude with sufficient accuracy for safe navigation.
Longitude is far more difficult because you can’t just determine it by looking at the stars; you have to know which time zone you are in. Greenwich in London is defined as zero degrees longitude; as you travel west from Greenwich across the Atlantic, your time zone shifts so that in New York it’s earlier in the day than in London. Conversely, as you travel east from Greenwich your time zone shifts so that in Moscow or Tokyo it’s later in the day than in London.
Your precise time zone at any point on Earth’s surface is defined by the point at which the Sun crosses an imaginary arc across the sky between the north and south points on your horizon, passing through the celestial pole (the point marked by the North Star in the Northern Hemisphere). Astronomers call this arc the Meridian. The point at which the Sun crosses the Meridian is СКАЧАТЬ