Название: Big data простым языком
Автор: Алексей Благирев
Издательство: Издательство АСТ
Жанр: Прочая образовательная литература
Серия: Бизнес-бук
isbn: 978-5-17-111829-7
isbn:
В тот момент, когда вы получили данные и начали заниматься подготовкой инсайта, данные уже устарели. Поэтому вместо того, чтобы выполнять и готовить отчетность, людям нужно выполнить анализ, про который никто не спрашивал ранее. Такой анализ необходим ввиду того, что данные быстро устаревают, и ряд ключевых аспектов может быть не покрыт во время процесса принятия решения.
Итак, для того чтобы Аналитик мог потратить свое рабочее время на анализ, о котором его никто не просил, у него должны быть достаточные полномочия, иначе, вместо подготовки регулярной отчетности, аналитик будет заниматься неструктурированным или слабоструктурированным анализом. Как ни странно, но data-driven организация вряд ли будет существовать в условиях регулярного процесса выпуска отчетности, на который тратится более восьмидесяти процентов времени работы команды. В одном из американских банков, где я однажды был на обмене опытом, была ситуация, когда люди выполняли регулярный процесс подготовки ежемесячной отчетности всего за 3 дня. Я спросил топ-менеджеров, а что люди делают остальное время, так как команда была достаточно большой. Они ответили – «Value Added активности», и все посмеялись. Признаюсь честно, до меня дошло не сразу. Под «делают Value Added активности» здесь подразумевалось, что аналитики использовали свое время, чтобы улучшить иные процессы организации по работе с данными и их продуктом – ежемесячной отчетностью.
Внутри треугольника находятся метрики и инсайты, которые приводят к действию. На вершинах треугольника обозначены ключевые направления создания ценности с использованием данных:
• Поведение (Behaviour) – Необходимо думать широко при анализе поведения своих пользователей или клиентов. Это не просто данные, а поведение реальных людей.
• Результаты (Outcomes) – Научитесь связывать поведение клиентов с ключевыми показателями или критическими факторами успеха организации.
• Опыт (Experience) – Инсайты должны приходит через эксперименты, исследования, тестирование своих клиентов или поиск закономерности в их поведении. Этим необходимо постоянно заниматься.
Data-driven организация – это не пункт назначения, а процесс или путь по которому идет организация, поэтому необходимо поддерживать его соответствующими артефактами и адекватными процессами. Этот процесс позволяет пользователям и сотрудникам применять тот или иной фреймворк работы с данными. Он не должен быть сложным и запутанным, а, скорее, должен отражать, кто и на каком конкретном шаге участвует в создании ценности с использованием данных.
Завершает Авинаш Кошик свой уникальный фреймворк одним из ключевых тезисов, без которого невозможно движение к data-driven организации, а именно: ответственным за данные, аналитику СКАЧАТЬ