Big data простым языком. Алексей Благирев
Чтение книги онлайн.

Читать онлайн книгу Big data простым языком - Алексей Благирев страница 8

СКАЧАТЬ смертельно опасной. Ученик, в свою очередь, имитировал боль от тока, а Экспериментатор заставлял Учителя продолжать эксперимент, несмотря ни на какие возгласы со стороны Ученика.

      До начала эксперимента Стэнли Милгрэм попросил большинство коллег, с которыми работал, оценить, сколько испытуемых дойдет до конца эксперимента. Большинство сошлось на двадцати процентах, но на практике все вышло ровным счетом наоборот. Менее двадцати процентов участников отказались продолжать эксперимент, а подавляющее большинство прошло его до конца. Этот психологический эксперимент показал чрезвычайно сильно выраженную готовность здоровых и нормальных взрослых людей достаточно долго следовать указаниям Экспериментатора (авторитета).

      Причем же здесь данные?

      Обратимся к евангелисту по цифровому маркетингу Google, Авинаш Кошик, который впервые ввел термин HYPPO в своей книге Web analytics: An Hour a Day.

      HYPPO – означает мнение самого высокооплачиваемого человека в комнате (Highest Paid Person Opinion). Когда в комнате, где принимается решение, есть человек, который получает больше всех, то, скорее всего, его авторитет будет ключевым при формировании конечного решения.

      Во многом такие решения могут противоречить тем, которые принимались на основании данных. Первые решения субъективны и, в конечном счете, преследуют личную выгоду, принося скрытый ущерб обществу. И как же быть? Ответ может лежать в плоскости деперсонификации принимаемых решений посредством анализа получаемых данных. Данные позволяют отказаться от эмоций и личной заинтересованности при анализе получаемых фактов.

      Для этого процесс подготовки отчетности требует определенной реорганизации, как в прочем и самой организации.

      7 шагов data-driven decision culture

      В 2007 году, во время своего выступления в Google Conversion University, Авинаш Кошик выделил семь ключевых шагов, которые позволяют трансформировать культуру работы организации и перейти к дата-центрированной организации. И сейчас они не потеряли своей актуальности, поэтому я и привел их в этой книге как одну из основ построения новой формы культуры работы с данными.

      Вот так называемые Cultural Hacks или Лайфхаки.

Шаг #1. Всегда переходите к Результатам – Go to the Outcomes

      Основа коллаборации между людьми с использованием данных лежит, прежде всего, в понимании того, что важно для каждого из участников: от чего зависят их бонусы или выплаты, на что обращают внимание люди, которые принимают решения. Для этого нужно понимать, какими объектами оперирует компания, и это понимание перенести на уровень данных. Традиционная ошибка – начать собирать все данные компании, считать все возможные из них метрики и отправлять всем заинтересованным людям отчеты с этими показателями.

Шаг #2. Отчетность – это еще не Аналитика – Reporting is not Analysis

      Большая часть отчетности, участвующая в подготовке, проверке или анализе, никак не связана с теми мотиваторами, от которых зависит завтрашний день каждого участника процесса, принимающего решение. В основном, ключевой ошибкой всегда и везде была простая СКАЧАТЬ