Название: ЦА. Как найти свою целевую аудиторию и стать для нее магнитом
Автор: Том Вандербильт
Издательство: Эксмо
Жанр: Маркетинг, PR, реклама
Серия: Top Business Awards
isbn: 978-5-699-92973-3
isbn:
Так что, если раньше Netflix полагался на слова людей о том, что им нравится – на этом для того времени новом основании базировались все системы рекомендаций[85], – теперь компания стала фокусировать внимание на том, что люди реально смотрят. «В таком подходе заключена масса преимуществ. Одно из них в том, как именно люди выставляют оценки: это делается в духе мотивации – они оценивают, что и как им бы хотелось смотреть», – говорит Аматриайн. Как рассказал Карлос Гомес-Юриб, директор по новым продуктам Netflix, «относительно высокий процент людей рассказывают, что они часто смотрят иностранные или документальные фильмы. На самом деле это не так».
В Netflix всегда подозревали об этом расхождении между людскими стремлениями и реальным поведением. Можно привести один пример: компания обладала данными по длительности нахождения прокатного DVD дома у пользователя, то есть сколько времени проходило с момента получения диска до реального просмотра. «Неудобная правда» Альберта Гора лежала без движения, кажется, бесконечно! «Этот фильм дольше всех находился по домам в ожидании просмотра», – рассказал Елин, и все остальные за столом согласно закивали. Но теперь критическое рассмотрение данных идет практически в реальном времени, чуть ли не на уровне людского подсознания: вы только что выключили фильм Бергмана и включили «Вышибалу»? Так и запишем в базу данных.
Люди, говорит Елин, «хотят о себе думать исключительно хорошо. Они могут заблуждаться по поводу собственного образа: что им, с их слов, нравится, как много «звездочек» они выставляют конкретному фильму и что они на самом деле смотрят». Вы можете поставить пять «звездочек» «Отелю «Руанда»» и две «звездочки» «Капитану Америке», но скорее всего, вы будете смотреть «Капитана Америку», говорит Елин.
Здесь нет ничего особенно нового. Еще со времен Торстейна Веблена экономисты рассуждали о видимых «сигналах» вкуса вне зависимости от того, истинные они или ложные. Они всегда стремятся выше: люди не ставят «Капитану Америке» пять звездочек, «Отелю «Руанда» – две, чтобы потом втайне пересматривать «Отель». Социолог Ирвинг Гофман дал широко известное описание нашего представления о себе в духе «драматического» действия: «Обычно продвижение вверх требует представления себя соответствующими действиями, исполнением определенных партий, а усилия продвинуться, так же как и усилия, помогающие не скатиться вниз, выражаются в жертвах, на которые вы пошли ради поддержания своего представительского переднего плана».
Всем нам когда-нибудь хотелось представляться другими, идеальными личностями. «На самом деле я – совсем другой человек, просто никак не могу собраться им стать», – писал в одной из своих пьес Эден фон Хорват. Вспомните, как в фильме «Сыграй еще раз, Сэм!» герой Вуди Аллена выкладывает дома СКАЧАТЬ
85
Джон Ридл, возглавлявший исследовательскую группу в Университете штата Миннесота и создавший одну из ранних систем, помогавшую ориентироваться в огромном потоке статей по рейтингам USENET, рассказал журналу «Нью-Йоркер»: «То, что вы рассказываете нам о своих предпочтениях, годится для предсказаний того, что вам понравится в будущем, больше любой другой информации, которую мы пробовали анализировать… Пусть это и глупо прозвучит, но вы иногда рассказываете это маркетологам, а они в ответ выглядят озадаченными». Сам Ридл чувствовал ограниченность систем на базе рейтингов, включая и ограничения по поводу того, как люди оценивают предметы. «Некоторые исследователи предлагали системы компенсаций для поощрения пользователей за оценки. Экономические последствия такого решения были бы интересны, но возникает вопрос: необходимы ли компенсации, если рейтинги можно собирать без каких-либо усилий со стороны пользователей? Мы верим в то, что оптимальным решением стало бы улучшение пользовательского интерфейса в целях выявления скрытых рейтингов путем наблюдения за поведением пользователей. Скрытые рейтинги включают меру интереса, например помогают узнать, прочитал ли пользователь статью, и если да, то сколько времени он на нее потратил. Наши исходные исследования показали, что мы можем получить гораздо более обширные данные рейтингов путем использования скрытых рейтингов, и прогнозы, сделанные на базе времени чтения, практически столь же точны, как и прогнозы на базе математики». См.: