Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта. Макс Тегмарк
Чтение книги онлайн.

Читать онлайн книгу Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта - Макс Тегмарк страница 29

СКАЧАТЬ ну и потакая своему внутреннему гику.

      Как уже говорилось, Тьюринг в своей памятной статье 1936 года доказал также кое-что значительно более важное: если только компьютер обладает способностью производить некий весьма незначительный минимум операций, он универсален – в том смысле, что при достаточном количестве ресурсов он может сделать все то, на что способен любой другой компьютер. Он доказал универсальность “компьютера Тьюринга”, а приближая его к физическому миру, мы только что показали, что семейство универсальных компьютеров включает в себя такие разные объекты, как сеть гейтов NAND или сеть соприкасающихся нейронов. Более того, Стивен Вольфрам заявил, что большая часть нетривиальных физических систем, от меняющейся погоды до мыслящего мозга, становятся универсальным компьютером, если позволить им как угодно менять свои размеры и не ограничивать их во времени.

      Этот самый факт – а именно, что одно и то же вычисление может быть произведено на любом универсальном компьютере, как раз и означает, что вычисление не зависит от субстрата в том же самом отношении, в каком от него не зависит информация: каков бы физический субстрат ни был, оно живет там свою жизнь. Если вы – суперумный персонаж какой-то компьютерной игры будущего, обладающий сознанием, вам никогда не удастся узнать, породила ли вас рабочая станция под Windows, MacBook под MacOS или смартфон с Android, потому что вы субстрат-независимы. У вас не окажется и никаких способов определить, какого рода транзисторы используются микропроцессором этого компьютера.

      Поначалу эта базовая идея субстрат-независимости привлекла меня тем, что у нее есть большое количество красивых иллюстраций в физике. Например, волны: у них есть разнообразные свойства – скорость, длина волны, частота, и физики могут решать связывающие их уравнения, совершенно не думая о том, как именно субстрат тут волнуется. Если вы слышите что-то, то вы регистрируете звуковые волны, распространяющиеся в той смеси газов, которую мы называем воздухом, и мы можем рассчитать относительно этих волн все что угодно – что их интенсивность уменьшается как квадрат расстояния, или как они проходят через открытую дверь или отражаются от стен, производя эхо, – ничего не зная о составе воздуха. На самом деле нам даже не обязательно знать, что он состоит из молекул: мы можем отвлечься ото всех подробностей относительно кислорода, азота или углекислого газа, потому что единственная характеристика этого субстрата, которая имеет значение и которая входит в знаменитое волновое уравнение, – это скорость звука, которую нам несложно померить и которая в данном случае будет равна примерно 300 метрам в секунду. Я рассказывал об этом волновом уравнении своим студентам на лекциях прошлой весной и говорил им, в частности, о том, что его открыли и им стали успешно пользоваться еще задолго до того, как физики установили, что молекулы и атомы вообще существуют!

      Этот пример с волновым уравнением позволяет сделать СКАЧАТЬ