Название: Фискальная политика в многострановой модели общего экономического равновесия
Автор: Кристина Нестерова
Издательство: РАНХиГС
Жанр: Экономика
Серия: Научные доклады: экономика
isbn: 978-5-7749-1226-1
isbn:
В России наблюдается проблема старения населения, что в будущем создаст дополнительную нагрузку на пенсионную систему страны. Модель позволяет анализировать данные вопросы в рамках подхода общего равновесия в динамике. Это дает возможность учесть взаимозависимость различных мер, таких как изменение в будущем пенсионного возраста, налогов и цен на энергоносители. Модель различает различные виды налогов, и с ее помощью можно сравнивать эффект от изменения различных ставок: например, можно проанализировать общие потери от повышения налога на потребление или налога на заработную плату, а также распределение данных потерь по поколениям.
Настоящая модель позволяет также оценивать долгосрочный эффект налоговой политики в открытой экономике, а также распределение этого эффекта между поколениями, что является актуальным фактором при принятии политических решений.
Тема настоящего исследования представляется весьма актуальной в связи с разработкой мер, направленных на стабилизацию экономики после негативного шока нефтяных цен в конце 2014 г., а также реализацией плана антикризисных мер и мер, направленных на устойчивое долгосрочное развитие экономики[1].
1. Построение расчетной модели общего экономического равновесия для США, Европы, Японии, Китая, Индии и России
Демографические процессы моделируются как полностью экзогенные, т. е. рождаемость и смертность изначально задаются чисто внешним образом и не зависят от эндогенной динамики модели. При том что возрастная структура играет ключевую роль в данной модели, половая структура нами игнорируется, поэтому агенты не имеют половой принадлежности. В каждый период времени агент с некоторой вероятностью может стать родителем вне зависимости от количества детей, которых агент уже имеет к этому моменту. В каждом регионе продолжительность жизни агентов не превосходит 90 лет, поэтому количество поколений, проживающих одновременно в каждый момент времени, равно 91. Весь период жизни репрезентативного агента разбивается на несколько стадий, имеющих существенные отличия. Первая стадия начинается с момента рождения и заканчивается, когда он достигает возраста 20 лет. На первой стадии агент не предлагает рабочую силу на рынке труда, не имеет активов и поддерживается своим родителем. В возрасте 21 года агент выходит на рынок труда и получает возможность держать активы и лишается поддержки родителя. Следующая стадия начинается в возрасте 23 лет и заканчивается, когда агент достигает 45 лет. В данный период агенты могут иметь детей, причем, как было указано выше, вероятность, с которой рождаются дети, является внешним параметром.
Для упрощения аналитических выкладок количество детей, которое может иметь агент в каждый год, считается не дискретным, а непрерывным и одинаковым для всего поколения данного возраста в рамках одного региона. Такое предположение позволяет сохранить свойство репрезентативности и избежать гетерогенности структуры популяции, когда агенты, принадлежащие к одному поколению, отличаются по количеству детей и, следовательно, имеют разные условия принятия решений. Иначе говоря, в каждый период времени все агенты одинакового возраста рождают некоторое одинаковое (в общем случае нецелое) число детей, а общее число детей, которое имеет тот или иной агент в заданном периоде времени, представлено суммой соответствующих чисел за все предыдущие годы детородного возраста. Такой подход позволяет достаточно точно воспроизвести демографические процессы, сохраняя гомогенность агентов в рамках каждого отдельного поколения. Данный подход был описан в работе [6].
Детородная стадия заканчивается, когда агент находится в возрасте 45 лет, и до 66 лет он продолжает поддерживать всех рожденных детей. При таком моделировании, когда агент достигает возраста 66 лет, самые позднее поколение детей (т. е. поколение, которое он родил в возрасте 45 лет) достигает второй стадии, когда они становятся самостоятельными. Следовательно, после 66 лет агент уже не участвует в поддержке детей, поскольку они получают доступ к рынку труда и могут обеспечивать себя автономно. С 68 лет начинается последняя стадия жизни, когда агент с некоторой экзогенно заданной вероятностью может умереть. Максимальная продолжительность жизни равна 90 годам, поэтому последняя стадия для самого долгоживущего агента длится с 68 до 90 лет. При такой постановке дети не умирают раньше своего родителя, что имеет значение для моделирования процесса наследования, т. е. передачи активов от родителя детям после его смерти.
После смерти агента активы, которыми он располагал, перераспределяются в качестве наследства среди части популяции агентов по определенному правилу. Подобное перераспределение используется для упрощения, поскольку позволяет сохранить репрезентативную структуру популяции. Если предположить, что после смерти родителя наследство перераспределяется только среди его детей, то в рамках одного поколения будут агенты как с живым, так и с уже умершим родителем, т. е. СКАЧАТЬ
1
Авторы выражают благодарность Л. Котликоффу, С. Бензеллу, Г. Лагарде и Е. Л. Горюнову за предоставленные материалы.