Название: Как ГМО спасает планету и почему люди этому мешают
Автор: Анна Иванова
Издательство: Эксмо
Серия: Подпишись на науку. Книги российских популяризаторов науки
isbn: 978-5-04-188103-0
isbn:
Итак, получается, что любое комбинаторное сочетание из трех ДНК-овых букв дает всегда одну строго определенную аминокислоту (минус три возможные комбинации для стоп-кодона). Таким образом, зная это трехбуквенное сочетание, мы всегда можем точно сказать, какая аминокислота будет добавлена в белок. Видим кодон ЦГУ – знаем, что добавится аминокислота аргинин (R).
А если наоборот? Взгляните на таблицу. Каждой аминокислоте может соответствовать от одной комбинации (как у метионина) до сразу целых шести (как у лейцина). Но чаще все же это от двух до четырех различных комбинаций. Это свойство генетического кода называется избыточностью. Если мы увидим «белковую» букву R (аминокислоту аргинин), то будем в растерянности – как же именно перевести его обратно на язык РНК? Ведь и вариант ЦГУ будет правильный, и вариант АГГ, и еще целых 4 разных варианта! Эта невозможность произвести однозначный перевод в обратную сторону и называется страшным словом «вырожденность». Вырожденность генетического кода. Иногда мне кажется, что если бы в прошлом генетики придумывали термины попроще, больше людей доверяли бы сегодня этой науке.
Еще немножко про генетический код напоследок. Этакая вставка для читателей, которые любят самые хитрые подробности. Хотя мы и называем код универсальным, есть и здесь несколько исключений. В таких ситуациях мы называем код (или коды) альтернативным(и). Впервые альтернативный код обнаружили еще в 1979 году. Причем не где-то далеко, а прямо внутри нас! Оказалось, что генетический код митохондрий отличается от стандартного, о котором мы говорили на протяжении всей этой главы[27]. Вот, например, обычно кодон УГА означает «точку» – символ окончания трансляции (терминации), после которого аминокислотная цепочка отсоединяется от рибосомы. А вот в коде митохондрий УГА всего лишь кодирует аминокислоту триптофан! Кодон АУА вместо обычного для большинства живых организмов изолейцина соответствует метионину. Ну а так как митохондрии – органеллы внутри наших клеток, то получается совсем парадоксально: даже внутри наших тел действуют разные «правила перевода»! Но на самом деле это не так уж и удивительно, ведь мы уже знаем, что когда-то митохондрии были вольными и самостоятельными организмами, которых захватили и поставили себе на службу наши одноклеточные предки.
Своими вариациями генетического кода обладают также некоторые бактерии, водоросли, плоские черви, паразиты… А кое-кто из них даже умеет переключаться между тем, какой код им использовать, в зависимости от окружающих их условий[28]! Воистину, генетика – настоящее олицетворение утверждения, что из каждого правила просто обязаны быть исключения!
СКАЧАТЬ
26
Может, но реально 64–3! – говорит моя строгая научный редактор и она абсолютно права!
27
Barrell, B., Bankier, A. & Drouin, J. A different genetic code in human mitochondria. Nature 282, 189–194 (1979). https://doi.org/10.1038/282189a0. https://www.nature.com/articles/282189a0 / первое обнаружение описано у Barrell B.G.7, Bankier A.T., Drouin J. A different genetic code in human mitochondria. Nature. 1979 Nov 8;282(5735):189–94. doi: 10.1038/282189a0. PMID: 226894.
28
Речь о бактерии Acetohalobium arabaticum. Если эта бактерия растет в среде, где содержится пируват, то использует обычный код для 20 аминокислот. Но стоит пересадить ее на среду, где есть триметиламин, как бактерия добавляет в свой «алфавит» нестандартную 21-ю аминокислоту пирролизин. Dynamic expansion of the genetic code /