Properties for Design of Composite Structures. Neil McCartney
Чтение книги онлайн.

Читать онлайн книгу Properties for Design of Composite Structures - Neil McCartney страница 64

СКАЧАТЬ Baseline equals StartFraction 1 minus nu Subscript t Baseline Over upper E Subscript upper T Baseline EndFraction left-parenthesis sigma Subscript r r Baseline plus sigma Subscript theta theta Baseline right-parenthesis minus StartFraction 2 nu Subscript upper A Baseline Over upper E Subscript upper A Baseline EndFraction sigma Subscript z z Baseline period"/>(4.101)

      On substituting for σzz using (4.100), it then follows that

      On subtracting (4.95) and (4.96),

      It follows from (4.94), on addition and subtraction, that

      Relations (4.102) and (4.104) then assert that

      Relations (4.103) and (4.105) assert that

      The addition and subtraction of (4.106) and (4.107) leads to the results

      sigma Subscript theta theta Baseline equals 2 mu Subscript t Baseline left-parenthesis upper A zero width space zero width space plus StartFraction 6 k Subscript upper T Baseline Over k Subscript upper T Baseline minus mu Subscript t Baseline EndFraction upper C r squared minus StartFraction 3 upper D Over r Superscript 4 Baseline EndFraction right-parenthesis cosine 2 theta period(4.109)

      From (4.94) and (4.98), it follows that

      It is easily shown that the stress field given by relations (4.108)–(4.110) satisfies automatically the following equilibrium equations for any values of the parameters A, B, C and D (see (2.125)–(2.127))

      StartFraction partial-differential sigma Subscript r r Baseline Over partial-differential r EndFraction plus StartFraction 1 Over r EndFraction StartFraction partial-differential sigma Subscript r theta Baseline Over partial-differential theta EndFraction plus StartFraction sigma Subscript r r Baseline minus sigma Subscript theta theta Baseline Over r EndFraction equals 0 comma(4.111)

      StartFraction partial-differential sigma Subscript r theta Baseline Over partial-differential r EndFraction plus StartFraction 1 Over r EndFraction StartFraction partial-differential sigma Subscript theta theta Baseline Over partial-differential theta EndFraction 
              <a href=СКАЧАТЬ