Properties for Design of Composite Structures. Neil McCartney
Чтение книги онлайн.

Читать онлайн книгу Properties for Design of Composite Structures - Neil McCartney страница 20

СКАЧАТЬ as state variables, rather than the specific volume Ω introduced in (2.65) and (2.67).

      2.10 Strain Tensor

      p overbar equals x overbar Subscript upper K Baseline i overbar Subscript upper K Baseline comma p equals x Subscript k Baseline i Subscript k Baseline comma(2.70)

      where summations over values K, k = 1, 2, 3, are implied for repeated suffices. The corresponding infinitesimal vectors are written as

      As

      i overbar Subscript upper K Baseline period i overbar Subscript upper L Baseline equals delta Subscript upper K upper L Baseline and i Subscript k Baseline period i Subscript l Baseline equals delta Subscript k l Baseline comma(2.72)

      it follows that

      Any vector v may be written as

      v equals v overbar Subscript upper K Baseline i overbar Subscript upper K Baseline equals v Subscript k Baseline i Subscript k Baseline period(2.74)

      Define δKl and δkL by the relation

      delta Subscript upper K k Baseline equals delta Subscript k upper K Baseline equals i overbar Subscript upper K Baseline period i Subscript k Baseline period(2.75)

      It then follows that

      v Subscript k Baseline equals delta Subscript k upper K Baseline v overbar Subscript upper K Baseline and v overbar Subscript upper K Baseline equals delta Subscript upper K k Baseline v Subscript k Baseline period(2.76)

      It is clear that

      delta Subscript upper K k Baseline delta Subscript k upper L Baseline equals delta Subscript upper K upper L Baseline and delta Subscript k upper K Baseline delta Subscript upper K l Baseline equals delta Subscript k l Baseline period(2.77)

      The time-dependent deformation that transforms the undeformed region B¯ into the region B(t) may be expressed as

      x equals x left-parenthesis x overbar comma t right-parenthesis comma x overbar equals ModifyingAbove x With bar left-parenthesis x comma t right-parenthesis period(2.78)

      It then follows that

      d x equals StartFraction partial-differential x Over partial-differential x overbar EndFraction d x overbar comma d x overbar equals StartFraction partial-differential x overbar Over partial-differential x EndFraction d x comma(2.79)

      where the increments are taken at some time t such that dt = 0. In component form,

      In the undeformed body, on using (2.71) and (2.73), the increment of arc length ds¯ is such that

      where ckl is Cauchy’s symmetric deformation tensor. Similarly, for the deformed body, the line increment ds¯deforms to an increment ds such that

      where CKL is Green’s symmetric deformation tensor. In dyadic form

      d s squared equals d x period d x equals left-parenthesis d x overbar period ModifyingAbove nabla With bar x right-parenthesis period left-parenthesis d x overbar period ModifyingAbove nabla With bar x right-parenthesis equals d x overbar period upper C period d x overbar comma(2.83)

      where СКАЧАТЬ