Magnetic Resonance Microscopy. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Magnetic Resonance Microscopy - Группа авторов страница 17

Название: Magnetic Resonance Microscopy

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9783527827251

isbn:

СКАЧАТЬ style="font-size:15px;">      49 49 Kalfe, A., Telfah, A., Lambert, J.et al. (2015). Looking into living cell systems: Planar waveguide microfluidic NMR detector for in vitro metabolomics of tumor spheroids. Analytical Chemistry 87 (14): 7402–7410. doi: 10.1021/acs.analchem.5b01603.

      50 50 Davoodi, H., Nordin, N., Bordonali, L.et al. (2020). An NMR-compatible microfluidic platform enabling in situ electrochemistry. Lab on a Chip 20 (17): 3202–3212. doi: 10.1039/d0lc00364f.

      51 51 Bordonali, L., Nordin, N., Fuhrer, E.et al. (2019). Parahydrogen based NMR hyperpolarisation goes micro: An alveolus for small molecule chemosensing. Lab on a Chip 19: 503–512. doi: 10.1039/C8LC01259H.

      52 52 Eills, J., Hale, W., Sharma, M.et al. (2019). High-resolution nuclear magnetic resonance spectroscopy with picomole sensitivity by hyperpolarization on a chip. Journal of the American Chemical Society 141 (25): 9955–9963. doi: 10.1021/jacs.9b03507.

      53 53 Lehmkuhl, S., Wiese, M., Schubert, L.et al. (2018). Continuous hyper-polarization with parahydrogen in a membrane reactor. Journal of Magnetic Resonance 291: 8–13. doi: 10.1016/j.jmr.2018.03.012.

      54 54 Hiramoto, K., Ino, K., Nashimoto, Y.et al. (2019). Electric and electrochemical microfluidic devices for cell analysis. Frontiers in Chemistry 7 (396): 396. doi: 10.3389/fchem.2019.00396.

      55 55 Jayawickrama, D.A.and Sweedler, J.V. (2004). Dual microcoil NMR probe coupled to cyclic CE for continuous separation and analyte isolation. Analytical Chemistry 76 (16): 4894–4900. doi: 10.1021/ac049390o.

      56 56 Grass, K., Böhme, U., Scheler, U.et al. (2008). Importance of hydrodynamic shielding for the dynamic behavior of short polyelectrolyte chains. Physical Review Letters 100 (9): 096104. doi: 10.1103/physrevlett.100.096104.

      57 57 Diekmann, J., Adams, K.L., Klunder, G.L.et al. (2011). Portable microcoil NMR detection coupled to capillary electrophoresis. Analytical Chemistry 83 (4): 1328–1335. doi: 10.1021/ac102389b.

      58 58 Gomes, B., Pollyana, D.S., Lobo, C.et al. (2017). Strong magnetoelectrolysis effect during electrochemical reaction monitored in situ by high-resolution NMR spectroscopy. Analytica Chimica Acta 983: 91–95. doi: 10.1016/j.aca.2017.06.008.

      59 59 Sorte, E.G., Jilani, S., and Tong, Y.J. (2017). Methanol and ethanol electrooxidation on PtRu and PtNiCu as studied by high-resolution in situ electrochemical NMR spectroscopy with interdigitated electrodes. Electrocatalysis 8: 95–102. doi: 10.1007/s12678-016-0344-8.

      60 60 Zu-Rong, N., Cui, X.-H., Cao, S.-H.et al.(2017). A novel in situ electrochemical NMR cell with a palisade gold film electrode. AIP Advances 7 (8): 085205. doi: 10.1063/1.4997887.

      61 61 Da Silva, P., Gomes, B., Lobo, C.et al. (2019). Electrochemical NMR spectroscopy: Electrode construction and magnetic sample stirring. Microchemical Journal 146: 658–663. doi: 10.1016/j.microc.2019.01.010.

      62 62 Swyer, I., Soong, R., Dryden, M.D.M.et al. (2016). Interfacing digital microfluidics with high-field nuclear magnetic resonance spectroscopy. Lab on a Chip 16 (22): 4424–4435. doi: 10.1039/C6LC01073C.

      63 63 Swyer, I., Von Der Ecken, S., Wu, B.et al. (2019). Digital microfluidics and nuclear magnetic resonance spectroscopy for in situ diffusion measurements and reaction monitoring. Lab on a Chip 19: 641–653. doi: 10.1039/c8lc01214h.

      64 64 Hilty, C., McDonnell, E.E., Granwehr, J.et al. (2005). Microfluidic gas-flow profiling using remote-detection NMR. Proceedings of the National Academy of Sciences of the United States of America 102 (42): 14960–14963. doi: 10.1073/pnas.0507566102.

      65 65 Zhivonitko, V.V., Telkki, V.-V., Leppäniemi, J.et al. (2013). Remote detection NMR imaging of gas phase hydrogenation in microfluidic chips. Lab on a Chip 13 (8): 1554–1561. doi: 10.1039/c3lc41309h.

      66 66 Jiménez-Martínez, R., Kennedy, D.J., Rosenbluh, M.et al. (2014). Optical hyperpolarization and NMR detection of 129Xe on a microfluidic chip. Nature Communications 5 (1): 3908. doi: 10.1038/ncomms4908.

      67 67 Kennedy, D.J., Seltzer, S.J., Jiménez-Martínez, R.et al. (2017). An optimized microfabricated platform for the optical generation and detection of hyperpolarized 129Xe. Scientific Reports 7 (1): 43994. doi: 10.1038/srep43994.

      68 68 Kurhanewicz, J., Vigneron, D.B., Ardenkjaer-Larsen, J.et al. (2019). Hyperpolarized 13C MRI: Path to clinical translation in oncology. Neoplasia 21 (1): 1–16. doi: 10.1016/j.neo.2018.09.006.

      69 69 Jeong, S., Eskandari, R., Park, S.et al. (2017). Real-time quantitative analysis of metabolic flux in live cells using a hyper-polarized micromagnetic resonance spectrometer. Science Advances 3 (6): e1700341. doi: 10.1126/sciadv.1700341.

      70 70 Mompéan, M., Sánchez-Donoso, R.M., De La Hoz, A.et al. (2018). Pushing nuclear magnetic resonance sensitivity limits with microfluidics and photo-chemically induced dynamic nuclear polarization. Nature Communications 9 (1): 108. doi: СКАЧАТЬ