RF/Microwave Engineering and Applications in Energy Systems. Abdullah Eroglu
Чтение книги онлайн.

Читать онлайн книгу RF/Microwave Engineering and Applications in Energy Systems - Abdullah Eroglu страница 29

СКАЧАТЬ is derived by taking the divergence of Eq. (1.89) and using Eq. (1.91) as

      (1.92)nabla dot left-parenthesis nabla times upper H overbar right-parenthesis equals nabla dot left-parenthesis StartFraction partial-differential upper D overbar Over partial-differential t EndFraction plus upper J overbar right-parenthesis

      Since nabla dot left-parenthesis nabla times upper H overbar right-parenthesis equals 0, then

      In an isotropic medium, the material properties do not depend on the direction of the field vectors. In other words, the electric field vector is in parallel with the electric flux density and the magnetic field vector is in parallel with the magnetic flux density.

      (1.94)upper D overbar equals epsilon upper E overbar

      (1.95)upper B overbar equals mu upper H overbar

      ε is the permittivity of the medium and represents its electrical properties and μ is the permeability of the medium and represents its magnetic properties. They are both scalar in the existence of an isotropic medium. However, when the medium is anisotropic this is no longer the case. The electrical and magnetic properties of the medium depend on the direction of the field vectors. Electric and magnetic field vectors are not in parallel with electric and magnetic flux. So, the constitutive relations get the following forms for an anisotropic medium.

      The permittivity and permeability of anisotropic medium are now tensors. They are expressed as

      (1.98)epsilon overbar overbar equals Start 3 By 3 Matrix 1st Row 1st Column epsilon 11 2nd Column epsilon 12 3rd Column epsilon 13 2nd Row 1st Column epsilon 21 2nd Column epsilon 22 3rd Column epsilon 23 3rd Row 1st Column epsilon 31 2nd Column epsilon 32 3rd Column epsilon 33 EndMatrix

      (1.99)mu overbar overbar equals Start 3 By 3 Matrix 1st Row 1st Column mu 11 2nd Column mu 12 3rd Column mu 13 2nd Row 1st Column mu 21 2nd Column mu 22 3rd Column mu 23 3rd Row 1st Column mu 31 2nd Column mu 32 3rd Column mu 33 EndMatrix

      (1.100)upper D Subscript x Baseline left-parenthesis upper B Subscript x Baseline right-parenthesis equals epsilon Subscript o Baseline left-parenthesis mu Subscript o Baseline right-parenthesis left-bracket epsilon 11 left-parenthesis mu 11 right-parenthesis upper E Subscript x Baseline left-parenthesis upper H Subscript x Baseline right-parenthesis plus epsilon 12 left-parenthesis mu 12 right-parenthesis upper E Subscript y Baseline left-parenthesis upper H Subscript y Baseline right-parenthesis plus epsilon 13 left-parenthesis mu 13 right-parenthesis upper E Subscript z Baseline left-parenthesis upper H Subscript z Baseline right-parenthesis right-bracket

      (1.101)upper D Subscript y Baseline left-parenthesis upper B Subscript y Baseline right-parenthesis equals epsilon Subscript o Baseline left-parenthesis mu Subscript o Baseline right-parenthesis left-bracket epsilon 21 left-parenthesis mu 21 right-parenthesis upper E Subscript x Baseline left-parenthesis upper H Subscript x Baseline right-parenthesis plus epsilon 22 left-parenthesis mu 22 right-parenthesis upper E Subscript y Baseline left-parenthesis upper H Subscript y Baseline right-parenthesis plus epsilon 23 left-parenthesis mu 23 right-parenthesis upper E Subscript z Baseline left-parenthesis upper H Subscript z Baseline right-parenthesis right-bracket

      (1.102)upper D Subscript z Baseline left-parenthesis upper B Subscript z Baseline right-parenthesis equals epsilon Subscript o Baseline left-parenthesis mu Subscript o Baseline right-parenthesis left-bracket epsilon 31 left-parenthesis mu 31 right-parenthesis upper E Subscript x Baseline left-parenthesis upper H Subscript x Baseline right-parenthesis plus epsilon 32 left-parenthesis mu 32 right-parenthesis upper E Subscript y Baseline left-parenthesis upper H Subscript y Baseline right-parenthesis plus epsilon 33 left-parenthesis mu 33 right-parenthesis upper E Subscript z Baseline left-parenthesis upper H Subscript z Baseline right-parenthesis right-bracket

      1.4.2 Integral Forms of Maxwell's Equations

      Let's begin our analysis with Eq. (1.89). Taking the surface integral of both sides of Eq. (1.89) over surface S with contour C gives

      (1.104)integral Underscript upper S Endscripts ModifyingBelow left-parenthesis nabla times upper H overbar right-parenthesis dot With presentation form for vertical right-brace Underscript StartLayout 1st Row circulation p e r 2nd Row unit area of upper S EndLayout Endscripts normal d s overbar equals ModifyingBelow contour-integral Underscript 
              <a href=СКАЧАТЬ