Название: Systems Biogeochemistry of Major Marine Biomes
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119554363
isbn:
187 Stramma, L., Visbeck, M., Brandt, P., andet al. (2009). Deoxygenation in the oxygen minimum zone of the eastern tropical North Atlantic. Geophysical Research Letters, 36 (20): L20607. https://doi.org/10.1029/2009GL039593
188 Sultan, N., Garziglia, S. and Ruffine, L. (2016). New insights into the transport processes controlling the sulfate‐methane‐transition‐zone near methane vents. Scientific Reports, 6 (1), 1–9. https://doi.org/10.1038/srep26701
189 Thamdrup, B.O. and Canfield, D.E. (1996). Pathways of carbon oxidation in continental margin sediments off central Chile. Limnology and oceanography, 41 (8), 1629–1650. https://doi.org/10.4319/lo.1996.41.8.1629
190 and Thamdrup, B., Finster, K., Hansen, W. et al. (1993). Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron and manganese. Applied and Environmental Microbiology 59 (1): 101–108. https://doi.org/10.1128/AEM.59.1.101‐108.1993
191 Thamdrup, B., Fossing, H. and Jorgensen B.B. (1994). Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochimica et Cosmochimica Acta 58: 5115–5129. https://doi.org/10.1016/0016‐7037 (94)90298‐4
192 Thamdrup, B., Dalsgaard, T., Jensen, M.M. et al. (2006). Anaerobic ammonium oxidation in the oxygen‐deficient waters off northern Chile. Limnology and Oceanography, 51 (5), 2145–2156. https://doi.org/10.4319/lo.2006.51.5.2145
193 Thamdrup, B., Steinsdóttir, H.G., Bertagnolli, A.D., et al. (2019). Anaerobic methane oxidation is an important sink for methane in the ocean's largest oxygen minimum zone. Limnology and Oceanography 64 (6): 2569–2585. https://doi.org/10.1002/lno.11235
194 Treude, T., Niggemann, J., Kallmeyer, J., et al. (2005). Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin. Geochimica et Cosmochimica Acta 69 (11): 2767–2779. https://doi.org/10.1016/j.gca.2005.01.002
195 Treude, T., Krause, S., Maltby, J. et al. (2014). Sulfate reduction and methane oxidation activity below the sulfate‐methane transition zone in Alaskan Beaufort Sea continental margin sediments: implications for deep sulfur cycling. Geochimica et Cosmochimica Acta 144: 217–237. https://doi.org/10.1016/j.gca.2014.08.018
196 Turchyn, A.V. and Schrag, D.P. (2006). Cenozoic evolution of the sulfur cycle: insight from oxygen isotopes in marine sulfate. Earth and Planetary Science Letters 241 (3–4): 763–779. https://doi.org/10.1016/j.epsl.2005.11.007
197 Turchyn, A.V., Antler, G., Byrne, D. et al. (2016). Microbial sulfur metabolism evidenced from pore fluid isotope geochemistry at Site U1385. Global and Planetary Change 141: 82–90. https://doi.org/10.1016/j.gloplacha.2016.03.004
198 Ulloa, O., Canfield, D.E., DeLong, E.F. et al. (2012). Microbial oceanography of anoxic oxygen minimum zones. Proceedings of the National Academy of Sciences, 109 (40): 15996–16003. https://doi.org/10.1073/pnas.1205009109
199 Valentine, D.L. and Reeburgh, W.S. (2000). New perspectives on anaerobic methane oxidation: minireview. Environmental Microbiology 2 (5): 477–484. https://doi.org/10.1046/j.1462‐2920.2000.0013
200 Van der Weijden, C.H., Reichart, G.J. and Visser, H.J. (1999). Enhanced preservation of organic matter in sediments deposited within the oxygen minimum zone in the northeastern Arabian Sea. Deep Sea Research Part I. Oceanography Research Papers 46: 807–830. https://doi.org/10.1016/S0967‐0637 (98)00093‐4
201 Van Mooy, B.A.S., Keil, R.G. and Devol, A.H. (2002). Impact of suboxia on sinking particulate organic carbon: enhanced carbon flux and preferential degradation of amino acids via denitrification. Geochimica et Cosmochimica Acta 66: 457–465. https://doi.org/10.1016/S0016‐7037 (01)00787‐6
202 Ward, B.B., Devol, A.H., Rich, J.J. et al. (2009). Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 461 (7260): 78–81. https://doi.org/10.1038/nature08276
203 Werne, J.P., Lyons, T.W., Hollander, D.J. et al. (2003). Reduced sulfur in euxinic sediments of the Cariaco Basin: sulfur isotope constraints on organic sulfur formation. Chemical Geology 195 (1–4): 159–179. https://doi.org/10.1016/S0009‐2541 (02)00393‐5
204 Werne, J.P., Hollander, D.J., Lyons, T.W. et al. (2004). Organic sulfur biogeochemistry: recent advances and future research directions. Geological Society of America Special Papers 379: 135–150.
205 Widdel, F., Musat, F., Knittel, K. and Galushko, A. (2007). Anaerobic degradation of hydrocarbons with sulphate as electron acceptor. In: Sulphate‐Reducing Bacteria: Environmental and Engineered Systems (eds. L.L. Barton and W.A. Hamilton). Cambridge, Cambridge University Press. https://doi.org/10.1017/CBO9780511541490.010
206 Wilkin, R.T. and Barnes, H.L. (1997). Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta 61 (2): 323–339. https://doi.org/10.1016/S0016‐7037 (96)00320‐1
207 Woebken, D., Lam, P., Kuypers, M.M. et al. (2008). A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environmental Microbiology 10 (11): 3106–3119. https://doi.org/10.1111/j.1462‐2920.2008.0164
208 Woulds, C., Cowie, G.L., Levin, L.A. et al. (2007). Oxygen as a control on sea floor biological communities and their roles in sedimentary carbon cycling. Limnology and Oceanography 52 (4): 1698–1709. https://doi.org/10.4319/lo.2007.52.4.1698
209 Wyrtki, K. (1971). Oceanographic Atlas of the International Indian Ocean Expedition, Vol. 531. Washington, DC: National Science Foundation.
210 Yao, W. and Millero, F.J. (1993). The rate of sulfide oxidation by MnO2 in seawater. Geochimica et Cosmochimica Acta 57: 3359–3365. https://doi.org/10.1016/0016‐7037 (93)90544‐7
211 Yao, W. and Millero, F.J. (1995). Oxidation of hydrogen sulfide by Mn (IV) and Fe (III) (hydr)oxides in seawater. ACS Symposium Series 612: 260–279. https://doi.org/10.1021/bk‐1995‐061h014
212 Yao, СКАЧАТЬ