Bauphysik-Kalender 2022. Nabil A. Fouad
Чтение книги онлайн.

Читать онлайн книгу Bauphysik-Kalender 2022 - Nabil A. Fouad страница 47

Название: Bauphysik-Kalender 2022

Автор: Nabil A. Fouad

Издательство: John Wiley & Sons Limited

Жанр: Отраслевые издания

Серия:

isbn: 9783433611098

isbn:

СКАЧАТЬ J.-P.; Holm, A. (2008) Thermische Untersuchungen an einem Metalldach mit Zwischensparrendämmung aus Mineralwolle und Holzfaserdämmplatten in: wksb 60/2008, S. 31–36.

      [45] Borsch-Laaks, R. (2017) Flachdachschäden und kein Ende? Ursachen, Wirkungen und das Feuchtemanagement in: Holzbau – die neue quadriga, H. 5-2017, S. 27–31.

      [46] Künzel, H.M.; Zirkelbach, D. (2007) Feuchteverhalten von Holzständerkonstruktionen mit WDVS – Sind die Erfahrungen aus amerikanischen Schadensfällen auf Europa übertragbar? in: wksb 52, H. 58, S. 50–57.

      [47] Heisted, O.; Harderup, L.-E. (2011) Comparison of measured and calculated temperature and relative humidity with varied and constant air flow in the façade air gap in: Tagungsband zum Nordic Symposium of Building Physics, Tampere 2011.

      [48] Borsch-Laaks, R., Geißler, A. (2015) Durchströmung von Dämmschichten – kommt nach der Luftdichtung jetzt auch noch die Winddichtung? in: Holzbau – die neue quadriga, H. 6, S. 65–69.

      [49] Zirkelbach, D.; Künzel, H.M.; Schafaczek, B.; Borsch-Laaks, R. (2009) Dampfkonvektion wird berechenbar – Instationäres Modell zur Berücksichtigung von konvektivem Feuchteeintrag bei der Simulation von Leichtbaukonstruktionen in: Proceedings 30. AIVC Conference, Berlin.

      [50] Nusser, B. (2012) Flachgeneigte hölzerne Dachkonstruktionen – Systemanalysen und neue Ansätze zur Planung hygrisch robuster flachgeneigter hölzerner Dachkonstruktionen unter Beachtung konvektiver Feuchteeinträge und temporärer Beschattungssituationen [Dissertation]. TU Wien.

      [51] Cheple, M.; Huelman, P. (2000) Literature Review of Exterior Insulation Finish Systems and Stucco Finishes in: Report MNDC/RP B80-0130, University of Minnesota.

      [52] ANSI/ASHRAE Standard 160 (2016) Criteria for Moisture Control Design Analysis in Buildings.

      [53] Van den Bossche, N.; Lacasse, M.; Janssens, A. (2011) Watertightness of Masonry Walls: An Overview in: Proceedings 12th International Conference on the Durability of Building Materials and Components 12dbmc, Porto 2011, 8 pp.

      [54] Arce-Recatalá, M.; García-Morales, S.; van den Bossche, N. (2020) Quantifying Wind-driven Rain Intrusion – A Comparative Study on The Water Management Features of Different Types of Rear-Ventilated Facade Systems in: E3S Web of Conferences 17 2, Nordic Symposium for Building Physics NSB 2020, 7 pp.

      [55] Künzel. H.M.; Zirkelbach, D. (2010) Hygrothermal consequences of rainwater leaks investigated for different wall structures with exterior insulation in: Gawin, Dariusz (Ed.): Research on building physics: proceedings of the 1st Central European Symposium on Building Physics: 13-15 September 2010, Cracow – Lodz, Poland. Lodz: Technical Univ. of Lodz, 2010, pp. 209–213.

      [56] WTA-Merkblatt 6-5: Innendämmung nach WTA II – Nachweis von Innendämmsystemen mittels numerischer Berechnungsverfahren (2014) Wissenschaftlich Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege [Hrsg.] IRB Verlag.

      [57] Borsch-Laaks, R. (1997) Kapitel 3.5 Wärmeschutz und Feuchteschutz in: Das Niedrigenergiehaus. Heidelberg: C.F. Müller Verlag.

      [58] Meteonorm (2021, Bern) Software zur Ermittlung Standortbezogener Klimadaten inkl. Verschattungen, Meteotest [Software]. https://meteonorm.com

      [59] Heidt, F.D. Sombrero: Software zur quantitativen Bestimmung der Verschattung. [Software] Universität Siegen, http://nesa1.uni-siegen.de/index.htm?/softlab/sombre.htm

      [60] Krus, M.; Rösler, D. (2011) Hygrothermische Berechnung der Einsatzgrenzen unterschiedlicher Systeme bei der Aufdoppelung von Wärmedämmverbundsystemen in: Bauphysik (33), H. 3.

      [61] Künzel, H.M. (1999) Dampfdiffusionsberechnung nach Glaser – quo vadis? in: IBP Mitteilung. Holzkirchen: Fraunhofer Institut für Bauphysik, Eigenverlag.

      [63] Bludau, Ch.; Kölsch, Ph. (2014) Verschattung von Holzflachdächern in: Beitrag zum 5. Internationalem Holz[Bau]Physik Kongress, Leipzig (zu beziehen unter www.holzbauphysik.de).

      [64] Borsch-Laaks, R.; Zirkelbach, D.; Künzel, H.M.; Schafaczek, B. (2009) Trocknungsreserven schaffen – Konvektive Feuchtebelastung bei Holzbaukonstruktionen und ihre Beurteilung mittels Glaserverfahren in: Tagungsband 30. AIVC Konferenz, Berlin.

      [65] Viitanen, H.; Ritschkoff, A-C. (1991) Brown rot decay in wooden constructions. Effect of temperature, humidity and moisture in: Swedish University of Agricultural Sciences, Department of Forest Products, Report no 222, Uppsala.

      [66] Viitanen, H.; Toratti, T.; Makkonen, L.; Peuhkuri, R.; Ojanen, T.; Ruokolainen, L.; Räisänen, J. (2010) Towards modelling of decay risk of wooden materials; European Journal of Wood and Wood Products. Berlin-Heidelberg: Springer.

      [67] Kehl, D. (2011) Pilzmodelle – Ist der Befall vorhersehbar? in: Holzbau – die neue quadriga, Ausgabe 01-2011.

      [68] Kehl, D (2013) Feuchtetechnische Bemessung von Holzkonstruktionen nach WTA – Hygrothermische Auswertung der anderen Art in: Holzbau – die neue quadriga, Ausgabe 06–2013.

      [69] Hansen, T.K.; Jensen, N.F.; Moller, E.; de Place Hansen, E.J. Peuhkuri, R. (2020) Monitored conditions in wooden wall plates in relation to mold and wood decaying fungi in: Nordic Symposium of Building Physics, Tallin.

      [70] WTA-Merkblatt 6-3: Rechnerische Prognose des Schimmelpilzwachstumsrisikos (2005) Wissenschaftlich Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege [Hrsg.] IRB Verlag.

      [71] Schöner, T.; Zirkelbach, D. (2016) Erstellung hygrothermischer Referenzjahre (HRY) in Deutschland in: IBP Mitteilung 547 [online]. https://www.ibp.fraunhofer.de/content/dam/ibp/ibp-neu/de/dokumente/ibpmitteilungen/501-550/547.pdf

      [72] Zirkelbach, D.; Schöner, T.; Tanaka, E.; Stöckl, B.; Kölsch, P.; Marra, E.; Schiessl, C.; Schmidt, T.; Hevesi-Toth, T.; Flucke, Y. (2016) Energieoptimiertes Bauen: Klima- und Oberflächenübergangsbedingungen für die hygrothermische Bauteilsimulation. Kurztitel: Klimamodelle in: IBP-Bericht HTB-021/2016. Valley.

      [73] Tanaka, E.; Zirkelbach, D.; Schöner, T. (2017) Lokalklima – Modelle zur Anpassung regionaler Klimadaten auf die lokalen Verhältnisse in: IBP-Mitteilung 551 [online] https://www.ibp.fraunhofer.de/content/dam/ibp/ibpneu/de/dokumente/ibpmitteilungen/551-600/551.pdf

      [74] Zirkelbach, D. (2017) Simulation des hygrothermischen Verhaltens begrünter Dachkonstruktionen in: Fouad, Nabil A. (Hrsg.) Bauphysikkalender 2017. Berlin: Ernst & Sohn.

      [75] Lokalklimagenerator V.2.1 (2017) [Software] https://wufi.de/de/2017/03/31/lokalklimagenerator

      [76] Schießl, C.; Zirkelbach, D.; Künzel, H.M. (2018) Nebenraum-Klimamodell für unbeheizte Dachräume in: IBP-Mitteilung 555 [online]. СКАЧАТЬ