Название: Genome Editing in Drug Discovery
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Биология
isbn: 9781119671398
isbn:
1.2 Genome Engineering
Genome engineering describes the specific introduction of new genetic elements into target genes to mediate either a disruption of the gene sequence, and consequent loss of gene expression, or a change in the protein sequence of the gene being transcribed. The ability to modify gene sequences at precise locations in the genome arose in the 1990s with the development of meganucleases and Zinc Finger Nuclease (ZFN) technology (Kim et al. 1996; Bibikova et al. 2001). ZFNs are synthetic restriction enzymes created by fusing one or more zinc finger DNA‐binding domains, engineered to target a specific DNA sequence, to a DNA nuclease, typically the restriction enzyme Fok1. ZFNs are able to recognize and cut a specific site in the genome to create a double‐stranded DNA break that can be repaired by non‐homologous end joining (NHEJ) or Homology Directed Repair (HDR) to result in gene inactivation or gene repair following the introduction of a DNA repair template. A boost to the technology came in 2009 with the discovery of transcription activator‐like effector nucleases (TALENs) (Boch et al. 2009; Moscou and Bogdanove 2009). TALENs are synthetic restriction enzymes engineered to cut specific sequences of DNA. These are created by fusing a TAL effector DNA‐binding domain designed to recognize the target DNA sequence with a nuclease to mediate DNA cleavage. TALEN constructs can be introduced into cells to cut the DNA at specific sequences to create a double‐stranded DNA break, that following repair by NHEJ, results in the inactivation of the target gene as a consequence of the introduction of additional DNA sequences as part of the repair process. Furthermore, TALENs can be used to change specific nucleotides within a gene, or to introduce new sequences into the genome following transfection of cells with a TALEN’s construct and a DNA repair template. Following HDR at the DNA cut site, the new sequence, encoded by the DNA repair template, can be introduced into the genome, albeit at a low editing efficiency. ZFNs and TALENs technologies have been used extensively in genome engineering projects in medical research and to modify plant genomes. Furthermore, Zinc Finger technology has been used by Sangamo Therapeutics and others to create genome editing medicines. Treatments for a range of diseases are in development with the most advanced project, a treatment for hemophilia currently in Phase 3 clinical studies. However, the widespread adoption of these technologies has been limited due to the requirement for expertise in protein engineering to create a ZFN or TALEN that precisely targets a specific DNA sequence, the relatively low editing efficiencies observed, and the potential for editing at multiple sites in the genome.
1.3 CRISPR/Cas9
The seminal publications in 2013 describing the ability of CRISPR/Cas9 to edit mammalian genomes have led to an explosion in the ability to make precise genetic changes within mammalian cells and animal models using a variety of CRISPR‐based editing methods (Cong et al. 2013; Mali et al. 2013). Since these publications, there has been a dramatic increase in the efficiency and variety of genome editing methods available with these methods now in widespread use in the pharmaceutical industry and academia for target and drug discovery, alongside the discovery and characterization of a number of new editing enzymes and the development of forms of Cas9 with improved editing activity (Gilbert et al. 2014; Kampmann 2018).
CRISPR/Cas is part of the bacterial immune response system where its natural role is to recognize and destroy non‐host nucleic acid sequences as part of the host immune defense system (Wiedenheft et al. 2012). The commonly used laboratory CRISPR system uses the Cas9 nuclease cloned from Streptococcus pyrogenes (SpCas9) although additional Cas9 enzymes have been cloned and characterized (Acharya et al. 2019). In contrast to TALENs and Zinc Finger technology, CRISPR/Cas9 is simple to use in any laboratory. It does not require protein engineering to create a nuclease able to recognize a specific site within the genome, rather targeting of the Cas9 nuclease to specific sites within the genome is mediated through the design of a specific synthetic guide RNA (sgRNA), complementary in sequence to the region of the genome to be targeted, that positions Cas9 at the target site in the genome to result in the creation of a double‐stranded DNA break. Guide RNA design is very straightforward, indeed a number of public‐domain and commercial design tools have become available for the immediate design of highly specific sgRNAs that can be ordered through the Internet and delivered to the laboratory within days. When the sgRNA is introduced into cells alongside SpCas9, the sgRNA recruits the Cas9 nuclease to a specific site in the genome at which a double‐stranded DNA break is introduced into the genome. This is then repaired СКАЧАТЬ