Название: Estadística aplicada a la ingeniería y los negocios
Автор: Carlos José Castillo
Издательство: Bookwire
Жанр: Математика
isbn: 9789972453564
isbn:
f) Escenario B. En la oficina principal se ha determinado que el 20 % de las atenciones en plataforma corresponden a los vecinos de la Zona 01 del distrito, mientras que en la oficina descentralizada el 32 % de las atenciones corresponden a los vecinos de dicha zona. Si se seleccionan al azar muestras de 38 y 42 atenciones realizadas en la oficina principal y la descentralizada, respectivamente, determine la probabilidad de que la proporción muestral de las atenciones correspondientes a los vecinos de la Zona 01 en la oficina principal supere en a lo más 0.05 a la proporción muestral de las atenciones correspondientes a los vecinos de la Zona 01 en la oficina descentralizada.
Solución
p1: Proporción muestral de las atenciones correspondientes a los vecinos de la Zona 01 del distrito (oficina principal) π1 = 0.20, n1 = 38
p2: Proporción muestral de las atenciones correspondientes a los vecinos de la Zona 01 del distrito (oficina descentralizada). π2 = 0.32, n2 = 42
Se sabe que:
Entonces:
π1 − π2 = 0.20 − 0.32 = −0.12
Calcular:
P(0 ≤ p1 − p2 ≤ 0.05) = 0.06811
23. Una revista orientada al público joven se encuentra realizando un estudio sobre el uso de los smartphones y tablets para conectarse a Internet, por parte de los jóvenes de Lima metropolitana que poseen dichos dispositivos. Se había determinado que el tiempo de uso diario de los smartphones presenta una distribución normal con media μ1 = 108 min y σ1 = 16 min, mientras que el tiempo de uso diario de las tablets presenta una distribución normal con μ2 = 115 min y σ2 = 21 min.
a) Si se seleccionan dos muestras aleatorias de 32 y 35 jóvenes que poseen smartphones y tablets, respectivamente, calcule la probabilidad de que la media muestral del tiempo de uso diario de los smartphones sea inferior a la media muestral del tiempo de uso diario de las tablets.
Solución
1: Media muestral del tiempo (min) de uso diario de los smartphones para conectarse a Internet. μ1 = 108 min, σ1 = 16 min, n1 = 32
2: Media muestral del tiempo (min) de uso diario de las tablets para conectarse a Internet. μ2 = 115 min, σ2 = 21 min, n2 = 35
Se sabe que:
Se tiene que
Luego, la probabilidad solicitada es: P(
1 − 2 ≤ 0) = 0.9385 b) Escenario A. La cantidad de música, en gigabytes (GB), almacenada en los smartphones por parte de los jóvenes de 15 a 19 años, y de los jóvenes de 20 a 24 años, presentan distribuciones normales con medias μ1 = 3.60 y μ2 = 3.35, respectivamente. Las varianzas poblacionales se desconocen pero se han estimado:
Solución
1: Media muestral de la cantidad (GB) de música almacenada en smartphones por parte de los jóvenes de 15–19 años μ1 = 3.60 GB, S1 = 0.8 GB, n1 = 42
2: Media muestral de la cantidad (GB) de música almacenada en smartphones por parte de los jóvenes de 20–24 años μ2 = 3.35 GB, S2 = 0.6 GB, n2 = 38
Se sabe que:
Entonces:
Se tiene que:
Luego, la probabilidad solicitada es:
c) Escenario B. Se ha determinado que de los jóvenes de 20 a 24 años el 32 % poseen smartphones de última generación; mientras que de los jóvenes de 15 a 19 años el 25 % poseen smartphones de última generación. Si se selecciona 2 muestras aleatorias de 37 y 32 jóvenes de 20 a 24 y 15 a 19 años, respectivamente, calcule la probabilidad de que la diferencia de proporciones muestrales de jóvenes de 20 a 24 años y de 15 a 19 años que poseen smartphones de última generación difiera en a lo más 0.10 de la correspondiente diferencia de proporciones poblacionales.
Solución
p1 : Proporción muestral de jóvenes de 20 a 24 años que poseen smartphones de última generación π1 = 0.32, n1 = 37
p2: Proporción muestral de jóvenes de 15 a 19 años que poseen smartphones de última generación π2 = 0.25, n2 = 32
Se sabe que:
Entonces:
Se СКАЧАТЬ