Fundamentals and Methods of Machine and Deep Learning. Pradeep Singh
Чтение книги онлайн.

Читать онлайн книгу Fundamentals and Methods of Machine and Deep Learning - Pradeep Singh страница 3

Название: Fundamentals and Methods of Machine and Deep Learning

Автор: Pradeep Singh

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119821885

isbn:

СКАЧАТЬ 16 Simulation of Self-Driving Cars Using Deep Learning 16.1 Introduction 16.2 Methodology 16.3 Hardware Platform 16.4 Related Work 16.5 Pre-Processing 16.6 Model 16.7 Experiments 16.8 Results 16.9 Conclusion References

      21  17 Assistive Technologies for Visual, Hearing, and Speech Impairments: Machine Learning and Deep Learning Solutions 17.1 Introduction 17.2 Visual Impairment 17.3 Verbal and Hearing Impairment 17.4 Conclusion and Future Scope References

      22  18 Case Studies: Deep Learning in Remote Sensing 18.1 Introduction 18.2 Need for Deep Learning in Remote Sensing 18.3 Deep Neural Networks for Interpreting Earth Observation Data 18.4 Hybrid Architectures for Multi-Sensor Data Processing 18.5 Conclusion References

      23  Index

      24  End User License Agreement

      Guide

      1  Cover

      2  Table of Contents

      3  Title page

      4  Copyright

      5  Preface

      6  Begin Reading

      7  Index

      8  End User License Agreement

      List of Illustrations

      1 Chapter 1Figure 1.1 Linear regression [3].Figure 1.2 Height vs. weight graph [6].Figure 1.3 Logistic regression [3].Figure 1.4 SVM [11].Figure 1.5 Decision tree.

      2 Chapter 2Figure 2.1 A high-level representation of Bayes optimal classifier.Figure 2.2 A high-level representation of Bootstrap aggregating.Figure 2.3 A high-level representation of Bayesian model averaging (BMA).Figure 2.4 A high-level representation of Bayesian classifier combination (BCC).Figure 2.5 A high-level representation of bucket of models.Figure 2.6 A high-level representation of stacking.

      3 Chapter 3Figure 3.1 ML/DL model deployment process.Figure 3.2 Residual.Figure 3.3 Confusion metric.Figure 3.4 Confusion metric interpretation.Figure 3.5 Metric derived from confusion metric.Figure 3.6 Precision-recall trade-off.Figure 3.7 AUC-ROC curve.Figure 3.8 Precision-recall curve.Figure 3.9 Confusion metric example.Figure 3.10 Cosine similarity projection.Figure 3.11 (a) Cosine similarity. (b) Soft cosine similarity.Figure 3.12 Intersection and union of two sets A and B.Figure 3.13 Confusion metric.

      4 Chapter 4Figure 4.1 Cases in Karnataka, India.Figure 4.2 Cases trend in Karnataka, India.Figure 4.3 Modified SEIR.Figure 4.4 LSTM cell.Figure 4.5 (a) Arrangement of data set in 3D tensor. (b) Mapping of the 3D and 2...Figure 4.6 RMSLE value vs. number of epochs.Figure 4.7 Cases in Karnataka.Figure 4.8 SEIR Model fit for test cases.Figure 4.9 Cases predicted for next 10 days.Figure 4.10 Testing results.Figure 4.11 Next 10 days Prediction using LSTM model.Figure 4.12 Prediction error curve.Figure 4.13 Prediction error and RMSLE curve.

      5 Chapter 5Figure 5.1 Classification of feature extraction methods.

      6 Chapter 6Figure 6.1 Relationship between AI, ML, and DL.Figure 6.2 Image segmentation process flow.Figure 6.3 The visual representation of clinical data generation to natural lang...

      7 Chapter 7Figure 7.1 Extraction of exudates.Figure 7.2 Extraction of blood vessels.Figure 7.3 Extraction of microaneurysms.Figure 7.4 Extraction of hemorrhages.Figure 7.5 Working of AdaBoost model.Figure 7.6 Working of AdaNaive model.Figure 7.7 Working of AdaSVM model.Figure 7.8 Working of AdaForest model.Figure 7.9 Representative retinal images of DR in their order of increasing seve...Figure 7.10 Comparison of classifiers using ROC curve (Binary classification).Figure 7.11 Comparison of classifiers (Binary Classification).Figure 7.12 Comparison of classifiers (Multi Classification).

      8 Chapter 8Figure 8.1 Workflow model of proposed system.Figure 8.2 Architecture of proposed system.Figure 8.3 Original dataset distribution.Figure 8.4 Resampling using SMOTE.Figure 8.5 Target class distribution.Figure 8.6 Resampled distribution applying SMOTE.Figure 8.7 Feature ranking using Extra tree classifier.Figure 8.8 p-values of the features.Figure 8.9 Performance evaluation of models under study 1 with dataset size = 1,...Figure 8.10 Performance evaluation of models under study 2 with data size = 1,00...Figure 8.11 Performance evaluation of models under study 3 With dataset size = 1...Figure 8.12 Correlation between follow-up time and death event.Figure 8.13 Performance evaluation of models on different classifiers.Figure 8.14 Performance evaluation of models on dataset size = 508.Figure 8.15 Performance evaluation of models on dataset size = 1,000.

      9 Chapter 9Figure 9.1 File level defect prediction process.Figure 9.2 A basic convolutional neural network (CNN) architecture.Figure 9.3 Overall network architecture of proposed NCNN model.Figure 9.4 Description regarding confusion matrix.Figure 9.5 Confusion matrix analysis for the data sets (KC1, KC3, PC1, and PC2).Figure 9.6 Model accuracy and model loss analysis for the data sets (KC1, KC3, P...Figure 9.7 Performance comparison of different models for software defect predic...Figure 9.8 Model accuracy analysis for the data sets (KC1, KC3, PC1, and PC2).Figure 9.9 Confusion СКАЧАТЬ