Verification of M.Faraday's hypothesis on the gravitational power lines. А. Т. Серков
Чтение книги онлайн.

Читать онлайн книгу Verification of M.Faraday's hypothesis on the gravitational power lines - А. Т. Серков страница 6

СКАЧАТЬ s. At the point of activation of the brake motor installation altitude was 27.8 km (the distance from the center of 1,776.108 cm), which corresponds to the orbital velocity 1,6661.105 m/s. Then, after 6 minutes the connection with the satellite was lost. Substituting the values of change of orbital parameters in the formula 1, we get the value of the constant C = 2,34.108 cm/s, very close to the values previously calculated for other satellites.

      Indian space research organization (ISRO,) reported [10] about the launch of 22 October 2008 on a circumlunar orbit of his device

      "Chandrayan-1 using developed in Indian rocket PSLV–XL (PSLV – Polar Satellite Launch Vehicle from Baikonur Satish Dhawan. Starting weight station was 1380 kg, weight station in lunar orbit – 523 kg.

      After a series of maneuvers November 4, the station went on the flight path to the Moon and on 8 November reached the environs of the Moon, where at a distance of 500 km from the surface was included brake motor, resulting in the station moved to a transitional circumlunar orbit resettlement 504 km, aposelene 7502 km and an orbital period of 11 hours. Then on 9 November, after adjustment of the pericenter of the orbit was lowered to 200 km. On November 13, the station was transferred to the circular working circumlunar orbit with altitude of 100 km (1,838.108 cm from the center of the Moon), a cycle time of 120 min, the orbital speed 1,6332.105 cm/s.

      On August 29, 2009 ISRO announced that radio contact with the satellite was lost. By the time of the loss of communication with the satellite, it stayed in orbit 312 days (0,27.108 (s) and managed to make a 3400 revolutions around the Moon.

      Indian space research organization claims that her device will be in lunar orbit for another 1000 days. The lack of data on the orbital parameters after braking satellite Chandrayaan-1 does not allow the calculation of the constant C. However, determining the average value for other satellites, using equation (3) to confirm or refine the prediction of the lifetime of the satellite "Chandrayan-1.

      The average value of the constant C it is advisable to calculate on three.satellites: "the lunar Prospector", "Smart-1" and "Kaguya". It is of 2.16.108 cm/s. The large deviation of the satellite is "the Moon-10" – 3,690.108 cm/s is associated with significant orbital eccentricity at which the intersection of the gravity-magnetic power lines occurs at small angles and braking force in accordance with equation (1) is small. Therefore, the estimated flight time is significantly less than the actual, since the calculation was made according to the formula (3), in which the angle α was not taken into account.

      With regard to satellite "Chandrayan-1, the calculation showed that the total time spent in orbit until the fall on the surface of the Moon is 644 days including 332 days after loss of communication with the satellite.

      The deviations of the estimated time from the actual for other satellites are given in table 1. In the case of a satellite, the lunar Prospector" observed the coincidence of two values: 0.157.108 and 0,153.108 C. For "Smart-1" rated value is 12.5 % higher than the actual, for the "Kaguya" 15 % below the actual time of flight of the satellite. This coincidence of the calculated and observational data confirms the correctness of the made assumptions about the braking satellites of the moon due to gravimagnetic forces.

      4. The influence of gravimagnetism on planetary and satellite distance

      Let us consider the problem of the connection between phenomena gravimagnetism with the regularity of planetary and satellite orbital distances. Here it is appropriate to remind once again about the ideas of M. Faraday, who introduced the concept of the gravitational field, managing the planet in orbit. “The sun generates a field around itself, and the planets and other celestial bodies feel the influence of the field and behave accordingly."

      Unlike the Moon, the Earth has its own rotation around its axis. This rotation may distort the lines of tension from Sinα = 1 to Sinα = 0, that is, braking force in a rotating central bodies can have a very small value.

      It can be assumed that the rotation of the Earth causes deformation of the surrounding gravitational field, and this oscillatory motion, in which are formed of concentric layers with different orientation vector gravimagnetic tension. When the orientation is close to concentric (Sinα ≈ 0) the motion is without braking and energy consumption, i.e. elite or permitted orbits. If the orientation of the vector gravimagnetic tension is close to radial, as in the case of the Moon, the braking is happened and the satellite moves to the bottom of the orbit lying with less potential energy.

      In some works [11, 12] it is shown that planetary and satellite orbital distance r is expressed by the equation similar to equation Bohr quantization of orbits in the atom:

      r = n2k, (4)

      where n is an integer (quantum) number, k is a constant having a constant value for the planetary and each satellite system.

      The k values calculated for planetary and satellite systems, are presented in table 2. For different systems, while maintaining consistency within the system, the value of k varies within wide limits [13]. For the planetary system it is 6280.108 cm, and the smallest satellite system Mars 1,25.108 cm, there are 5 000 times smaller.

      Seemed interesting to find such a mathematical model, which would be in the same equation was combined planetary and satellite systems. In this respect fruitful was the idea expressed by H. Alfvén [14], that “the emergence of an ordered system of secondary bodies around the primary body – whether it be the Sun or a planet, definitely depends on two parameters initial body: its mass and speed"… It has been shown [13] that when the normalization constant k in the complex, representing the square root of the product of the mass of the central body for the period of its rotation (MT)of 0.5, the result is a constant value, see table 2. If the constant k is changed for the considered systems within 3.5 decimal orders of magnitude, normalized by k/(MT)0.5 value saves the apparent constancy, rather varies from 0.95.10-8 to 1.66.10-8

      Thus, in a mathematical model expressing the regularity of planetary and satellite distances should include the mass of the central body and the period of its rotation, two factors (mass movement) determining the occurrence of gravimagnetic forces in the system.

      Further, in the synthesis equation, it seemed natural, should include the gravitational constant G. By a large number of trial calculations, it was found that equation (mathematical model) that combines planetary and satellite systems, is the expression:

      r = n2(GMT/C)0.5, (5)

      where n is the number of whole (quantum) numbers, C is a constant having the dimension of velocity, cm/s, see table 2.

      Table 2. The values of the constants k and C

      Consider in more detail and compare the constants C, included in gravimagnetic equation (1), (3) and equation (5). In both cases, the constants have the same dimension cm/s and approximate nearer value. The average value of the constants included in equations (3) and (5) respectively of 2.16.108 and 4,01.108 cm/s, We can assume that we are talking about the same dynamic gravitational constant, similar to the electrodynamics constant, i.e. the speed of light.

      The overstated value of a constant, calculated according to equation (5) is connected with the incorrect definition of the period of rotation of the gas-liquid

      central bodies for example, the rotation period of the Sun at the equator is equal to 25 days, and at high latitudes 33 days. It is clear that the inner layers and the entire body as a whole rotate at a higher speed. In accordance with the formula (5) this will lead to a lower constant value C.

      The СКАЧАТЬ