Power Flow Control Solutions for a Modern Grid Using SMART Power Flow Controllers. Kalyan K. Sen
Чтение книги онлайн.

Читать онлайн книгу Power Flow Control Solutions for a Modern Grid Using SMART Power Flow Controllers - Kalyan K. Sen страница 32

СКАЧАТЬ VSC has a large leverage between its own rating and the controlled transmission line power. The series‐compensating voltage needs to be rated for only a fractional amount of transmitted power, whereas the shunt‐connected VSC in the Shunt–Shunt configuration has no such leverage and it needs to be rated for the full amount of transmitted power. Because of this uniqueness, the Shunt–Series configuration is a preferred topology for a PFC. However, in some special cases for point‐to‐point transfer of power between two isolated networks with POC voltages (Vs and Vs′) as shown in Figure 1-26 or interconnection of two transmission lines with different voltages or phase angles (or frequencies), Shunt–Shunt configuration may be the preferred solution. One such system, called the North American Electric Reliability Corporation (NERC) Interconnections, consists of Eastern Interconnection, Western Interconnection, and Electric Reliability Council of Texas (ERCOT) Interconnection, which are three separate systems of 60 Hz frequency that are asynchronous to each other. Another such system exists in Japan, connecting a 50 Hz frequency system in the North and the East with a 60 Hz frequency system in the South and the West, that is asynchronous to each other.

      As a special case, when the DC link capacitors of the two VSCs are not connected together, each of the shunt‐connected VSC (STATCOM) and the series‐connected VSC (SSSC) provides only a reactive power compensation that is independent of each other. Since there is no exchange of active power between the STATCOM and the SSSC, they act as RRs (Xsh or Xse = XC or − XL).

      As a special case, the IR can be reconfigured to operate as a RR by connecting the SSSC only. The reactance emulation technique changes the active and reactive power flows simultaneously, meaning both powers either increase or decrease as shown in Figure 1-30; therefore, the line cannot be optimized for the highest amount of active power flow that generates the most revenue at the lowest amount of reactive power flow by using a RR alone.

Schematic illustration of independent power flow control by impedance regulation. Schematic illustration of simultaneous power flow control by reactance regulation (Sen and Keri 2003).

      In 1998, a patent was granted to General Electric Company, which proposed to implement the independent control of active and reactive power flows such that the compensating voltage was generated using electrical machines (U.S. patent number 5,841,267, titled “Power Flow Control with Rotary Transformers”).

      The Sens (Kalyan and Mey Ling) proposed the idea of independent control of active and reactive power flows, using an IR, called the Sen Transformer, in a radically low‐cost way by using redesigned transformer/LTC technology. The reason is that the transformer/LTC technology has been proven to be efficient, simple, and reliable in utility applications for decades. This implementation of an IR is completely different from the original Westinghouse and the GE concepts. The Sens were awarded five U.S. patents (four patents in 2002, all titled “Versatile Power Flow Transformers for Compensating Power Flow in a Transmission Line” and numbered 6,335,613, 6,384,581, 6,396,248, and 6,420,856, and one patent in 2005, titled “Multiline Power Flow Transformer for Compensating Power Flow Among Transmission Lines,” and numbered 6,841,976). The Sen Transformer is fundamentally different from the conventional transformer, in a sense that it modifies both the magnitude and the phase angle of the line voltage while the conventional transformer only modifies the magnitude of the line voltage. Using a Sen Transformer, the active and reactive power flows in the line can be regulated independently as desired.