Название: Martingales and Financial Mathematics in Discrete Time
Автор: Benoîte de Saporta
Издательство: John Wiley & Sons Limited
Жанр: Математика
isbn: 9781119885023
isbn:
Table of Contents
1 Cover
4 Preface
6 1 Elementary Probabilities and an Introduction to Stochastic Processes 1.1. Measures and σ-algebras 1.2. Probability elements 1.3. Stochastic processes 1.4. Exercises
7 2 Conditional Expectation 2.1. Conditional probability with respect to an event 2.2. Conditional expectation 2.3. Geometric interpretation 2.4. Conditional expectation and independence 2.5. Exercises
8 3 Random Walks 3.1. Trajectories of the random walk 3.2. Asymptotic behavior 3.3. The Gambler’s ruin 3.4. Exercises
9 4 Martingales 4.1. Definition 4.2. Martingale transform 4.3. The Doob decomposition 4.4. Stopping time 4.5. Stopped martingales 4.6. Exercises
10 5 Financial Markets 5.1. Financial assets 5.2. Investment strategies 5.3. Arbitrage 5.4. The Cox, Ross and Rubinstein model 5.5. Exercises 5.6. Practical work
11 6 European Options 6.1. Definition 6.2. Complete markets 6.3. Valuation and hedging 6.4. Cox, Ross and Rubinstein model 6.5. Exercises 6.6. Practical work: Simulating the value of a call option
12 7 American Options 7.1. Definition 7.2. Optimal stopping 7.3. Application to American options 7.4. The Cox, Ross and Rubinstein model 7.5. Exercises 7.6. Practical work
13 8 Solutions to Exercises and Practical Work 8.1. Solutions to exercises in Chapter 1 8.2. Solutions to exercises in Chapter 2 8.3. Solutions to exercises in Chapter 3 8.4. Solutions to exercises in Chapter 4 8.5. Solutions to exercises in Chapter 5 8.6. Solutions to the practical exercises in Chapter 5 8.7. Solutions to exercises in Chapter 6 8.8. Solution to the practical exercise in Chapter 6 (section 6.6) 8.9. Solution to exercises in Chapter 7 8.10. Solution to the practical exercise in Chapter 7 (section 7.6)
14 References
15 Index
List of Illustrations
1 Chapter 3Figure 3.1. Graphical representation of a trajectory of a random walk between 0 ...Figure 3.2. Two paths from (1, 1) to (5, 3). For a color version of this figure,...Figure 3.3. A path from (0, 2) to (11, 1) passing through 0 (the unbroken blue l...
2 Chapter СКАЧАТЬ