Название: Change Detection and Image Time-Series Analysis 1
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Программы
isbn: 9781119882251
isbn:
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.
Saha, S., Bovolo, F., Bruzzone, L. (2019). Unsupervised deep change vector analysis for multiple-change detection in VHR images. IEEE Transactions on Geoscience and Remote Sensing, 57(6), 3677–3693.
Singh, A. (1989). Review article digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6), 989–1003 [Online]. Available at: https://doi.org/10.1080/01431168908903939.
Song, X.P., Hansen, M.C., Stehman, S.V., Potapov, S.V., Tyukavina, A., Vermote, E.F., Townshend, J.R. (2018). Global land change from 1982 to 2016. Nature, 560, 639–643.
Tong, X., Pan, H., Liu, S., Li, B., Luo, X., Xie, H., Xu, X. (2020). A novel approach for hyperspectral change detection based on uncertain area analysis and improved transfer learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2056–2069.
Wang, X., Liu, S., Du, P., Liang, H., Xia, J., Li, Y. (2018). Object-based change detection in urban areas from high spatial resolution images based on multiple features and ensemble learning. Remote Sensing, 10(2) [Online]. Available at: https://www.mdpi.com/2072-4292/10/2/276.
Wei, C., Zhao, P., Li, X., Wang, Y., Liu, F. (2019). Unsupervised change detection of VHR remote sensing images based on multi-resolution Markov random field in wavelet domain. International Journal of Remote Sensing, 40(20), 7750–7766 [Online]. Available at: https://doi.org/10.1080/01431161.2019.1602792.
Wu, Z., Hu, Z., Fan, Q. (2012). Superpixel-based unsupervised change detection using multi-dimensional change vector analysis and SVM-based classification. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, I-7, 257–262 [Online]. Available at: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/I-7/257/2012/.
Zanetti, M., Bovolo, F., Bruzzone, L. (2015). Rayleigh–Rice mixture parameter estimation via EM algorithm for change detection in multispectral images. IEEE Transactions on Image Processing, 24(12), 5004–5016.
Zhang, W., Lu, X., Li, X. (2018). A coarse-to-fine semi-supervised change detection for multispectral images. IEEE Transactions on Geoscience and Remote Sensing, 56(6), 3587–3599.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.