Название: Biomolecular Engineering Solutions for Renewable Specialty Chemicals
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Биология
isbn: 9781119771944
isbn:
88 Sinha, A. K., Sharma, U. K., & Sharma, N. (2008). A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents. International Journal of Food Sciences and Nutrition, 59(4), 299–326.
89 Song, J. W., Lee E, G., Yoon, S. H., Lee, S. H., Lee, J. M., Lee, S. G., & Kim, S. W. (2009). Vanillin production enhanced by substrate channeling in recombinant E. coli. Poster no 125 (session 1), SIM annual meeting and exhibition. Indus. Microbiol. Biotechnol. Westin harbor castle, Toronto ON, Canada.
90 Srivastava, S., Luqman, S., Khan, F., Chanotiya, C. S., & Darokar, M. P. (2010). Metabolic pathway reconstruction of eugenol to vanillin bioconversion in Aspergillus niger. Bioinformation, 4(7), 320.
91 Stentelaire, C., Lesage‐Meessen, L., Delattre, M., Haon, M., Sigoillot, J. C., Ceccaldi, B. C., & Asther, M. (1998). By‐passing of unwanted vanillyl alcohol formation using selective adsorbents to improve vanillin production with Phanerochaete chrysosporium. World Journal of Microbiology and Biotechnology, 14(2), 285.
92 Stentelaire, C., Lesage‐Meessen, L., Oddou, J., Bernard, O., Bastin, G., Ceccaldi, B. C., & Asther, M. (2000). Design of a fungal bioprocess for vanillin production from vanillic acid at scalable level by Pycnoporus cinnabarinus. Journal of Bioscience and Bioengineering, 89(3), 223–230.
93 Tadasa, K. (1977). Degradation of eugenol by a microorganism. Agricultural and Biological Chemistry, 41(6), 925–929.
94 Tadasas, K., & Kayahara, H. (1983) Initial steps of eugenol degradation pathway of a microorganism. Agricultural and Biological Chemistry, 47, 2639–2640.
95 Tai, A., Sawano, T., Yazama, F., & Ito, H. (2011). Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochimica et Biophysica Acta (BBA)‐General Subjects, 1810(2), 170–177.
96 Tan, M. C., Liew, S. L., Maskat, M. Y., Aida, W. W., & Osman, H. (2015). Optimization of vanillin production using isoeugenol as substrate by Aspergillus niger I‐1472. International Food Research Journal, 22(4), 1651.
97 Tang, P. L., & Hassan, O. (2020). Bioconversion of ferulic acid attained from pineapple peels and pineapple crown leaves into vanillic acid and vanillin by Aspergillus niger I‐1472. BMC Chemistry, 14(1), 7.
98 Tang, J., Shi, L., Li, L., Long, L., & Ding, S. (2018). Expression and characterization of a 9‐cis‐epoxycarotenoid dioxygenase from Serratia sp. ATCC 39006 capable of biotransforming isoeugenol and 4‐vinylguaiacol to vanillin. Biotechnology Reports, 18, e00253.
99 Tilay, A., Bule, M., & Annapure, U. (2010). Production of biovanillin by one‐step biotransformation using fungus Pycnoporous cinnabarinus. Journal of Agricultural and Food Chemistry, 58(7), 4401–4405.
100 Topakas, E., Kalogeris, E., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Bioconversion of ferulic acid into vanillic acid by the thermophilic fungus Sporotrichum thermophile. LWT‐Food Science and Technology, 36(6), 561–565.
101 Torre, P., De Faveri, D., Perego, P., Ruzzi, M., Barghini, P., Gandolfi, R., & Converti, A. (2004). Bioconversion of ferulate into vanillin by Escherichia coli strain JM109/pBB1 in an immobilized‐cell reactor. Ann. Microbiol, 54, 517–527.
102 Unno, T., Kim, S. J., Kanaly, R. A., Ahn, J. H., Kang, S. I., & Hur, H. G. (2007). Metabolic characterization of newly isolated Pseudomonas nitroreducens Jin1 growing on eugenol and isoeugenol. Journal of Agricultural and Food Chemistry, 55(21), 8556–8561.
103 Walton, N. J., Mayer, M. J., & Narbad, A. (2003). Vanillin. Phytochemistry, 63(5), 505–515.
104 Westcott, R. J., Cheetham, P. S. J., & Barraclough, A. J. (1993). Use of organized viable vanilla plant aerial roots for the production of natural vanillin. Phytochemistry, 35(1), 135–138.
105 Xie, Y., Zhang, J., Wang, C., Fan, Q., & Zhang, Y. (2020). Vanillin an active constituent from Vanilla bean induces apoptosis and inhibits proliferation in human colorectal adenocarcinoma cell line. Pharmacognosy Magazine, 16(67), 197.
106 Yamada, M., Okada, Y., Yoshida, T., & Nagasawa, T. (2007). Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells. Applied Microbiology and Biotechnology, 73(5), 1025–1030.
107 Yamada, M., Okada, Y., Yoshida, T., & Nagasawa, T. (2008). Vanillin production using Escherichia coli cells over‐expressing isoeugenol monooxygenase of Pseudomonas putida. Biotechnology Letters, 30(4), 665–670.
108 Yan‐Chun, Z., & Rong‐Liang, Z. (1991). Phenolic compounds and an analog as superoxide anion scavengers and anti oxidants. Biochemical Pharmacology, 42(6), 1177–1179.
109 Yang, W., Tang, H., Ni, J., Wu, Q., Hua, D., Tao, F., & Xu, P. (2013). Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin. PloS One, 8(6), e67339.
110 Yoon, S. H., Li, C., Lee, Y. M., Lee, S. H., Kim, S. H., Choi, M. S., & Kim, S. W. (2005a). Production of vanillin from ferulic acid using recombinant strains of Escherichia coli. Biotechnology and Bioprocess Engineering, 10(4), 378–384.
111 Yoon, S. H., Li, C., Kim, J. E., Lee, S. H., Yoon, J. Y., Choi, M. S., … & Kim, S. W. (2005b). Production of vanillin by metabolically engineered Escherichia coli. Biotechnology Letters, 27(22), 1829–1832.
112 Yoon, S. H., Lee, E. G., Das, A., Lee, S. H., Li, C., Ryu, H. K., & Kim, S. W. (2007). Enhanced vanillin production from recombinant E. coli using NTG mutagenesis and adsorbent resin. Biotechnology progress, 23(5), 1143–1148.
113 Zamzuri, N. A., & Abd‐Aziz, S. (2013). Biovanillin from agro wastes as an alternative food flavour. Journal of the Science of Food and Agriculture, 93(3), 429–438.
114 Zang, X., Liu, M., Fan, Y., Xu, J., Xu, X., & Li, H. (2018). The structural and functional contributions of β‐glucosidase‐producing microbial communities to cellulose degradation in composting. Biotechnol Biofuels, 11:51.
115 Zhang, C., Li, X., Lian, L., Chen, Q., Abdulmalik, O., Vassilev, V., & Asakura, T. (2004). Anti‐sickling effect of MX‐1520, a prodrug of vanillin: an in vivo study using rodents. British Journal of Haematology, 125(6), 788–795.
116 Zhang, Y., Xu, P., Han, S., Yan, H., & Ma, C. (2006). Metabolism of isoeugenol via isoeugenol‐diol by a newly isolated strain of Bacillus subtilis HS8. Applied Microbiology and Biotechnology, 73(4), 771–779.
117 Zhao, L. Q., Sun, Z. H., Zheng, P., & Zhu, L. L. (2005). Biotransformation of isoeugenol to vanillin by a novel strain of Bacillus fusiformis. Biotechnology Letters, 27(19), 1505–1509.
118 Zhao, L. Q., Sun, Z. H., Zheng, P., & He, J. Y. (2006). Biotransformation of isoeugenol to vanillin by Bacillus fusiformis CGMCC1347 with the addition of resin HD‐8. Process Biochemistry, 41(7), 1673–1676.
119 Zheng, L., Zheng, P., Sun, Z., Bai, Y., Wang, J., & Guo, X. (2007). Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresource Technology, 98(5), 1115–1119.
Конец ознакомительного фрагмента.
Текст СКАЧАТЬ