Название: Biomolecular Engineering Solutions for Renewable Specialty Chemicals
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Биология
isbn: 9781119771944
isbn:
53 Lesage‐Meessen, L., Stentelaire, C., Lomascolo, A., Couteau, D., Asther, M., Moukha, S. & Asther, M. (1999). Fungal transformation of ferulic acid from sugar beet pulp to natural vanillin. Journal of the Science of Food and Agriculture, 79(3), 487–490.
54 Li, Y. H., Sun, Z. H., Zhao, L. Q., & Xu, Y. (2005). Bioconversion of isoeugenol into vanillin by crude enzyme extracted from soybean. Applied Biochemistry and Biotechnology, 125(1), 1–10.
55 Li, X., Yang, J., Li, X., Gu, W., Huang, J., & Zhang, K. Q. (2008). The Metabolism of ferulic acid via 4‐vinylguaiacol to vanillin by Enterobacter sp. Px6‐4 isolated from Vanilla root. Process Biochemistry, 43(10), 1132–1137.
56 Lirdprapamongkol, K., Sakurai, H., Suzuki, S., Koizumi, K., Prangsaengtong, O., Viriyaroj, A., & Saiki, I. (2010). Vanillin enhances TRAIL‐induced apoptosis in cancer cells through inhibition of NF‐κB activation. in vivo, 24, 501–506.
57 Liu, H. M., Zou, Y., Yao, C. Y., & Yang, Z. (2020). Enzymatic synthesis of vanillin and related catalytic mechanism. Flavour and Fragrance Journal, 35(1), 51–58.
58 Mabberley, D. J. (1997). The plant‐book: A Portable Dictionary of the Vascular Plants. Cambridge University Press. New York, NY. 858 pp. ISBN 0‐521‐41421‐0.
59 Mane, J., & Zucca, J. (1993). Method for obtaining a natural vanilla aroma by treatment of vanilla beans and aroma thus obtained. French patent 2691880.
60 Motedayen, N., Ismail, M. B., & Nazarpour, F. (2013). Bioconversion of ferulic acid to vanillin by combined action of Aspergillus niger K8 and Phanerochaetecrysosporium ATCC 24725. African Journal of Biotechnology, 12, 6618–6624.
61 Naidu, M. M., Kumar, P. S., Shyamala, B. N., Sulochanamma, G., Prakash, M., & Thakur, M. S. (2012). Enzyme‐assisted process for production of superior quality vanilla extracts from green vanilla pods using tea leaf enzymes. Food and Bioprocess Technology, 5(2), 527–532.
62 Ni, J., Tao, F., Du, H., & Xu, P. (2015). Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources. Scientific Reports, 5, 13670.
63 Numpaque, M. A., González, J. H. G., & Restrepo, D. L. D. (2016). Biotransformation of ferulic acid by the phytopathogenic fungi Colletotrichum acutatum and Lasiodiplodia theobromae. Revista Facultad Nacional de Agronomía Medellín, 69, 7835–7844.
64 Odoux, E. (2000). Changes in Vanillin and Glucovanillin concentrations during the various stages of the process traditionally used for curing Vanilla fragrans beans in Réunion. Fruits (Paris), 55(2), 119–125.
65 Odoux, É. (2006). Glucosylated aroma precursors and glucosidase (s) in vanilla bean (Vanilla planifolia G. Jackson). Fruits, 61(3), 171–184.
66 Overhage, J., Priefert, H., Rabenhorst, J., & Steinbüchel, A. (1999). Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene. Applied Microbiology and Biotechnology, 52(6), 820–828.
67 Overhage, J., Priefert, H., Rabenhorst, J., & Steinbuechel, A. (2000). Google Patents. Patent number DE19850242‐A1/30, HAARMANN & REIMER GMBH, Germany.
68 Overhage, J., Steinbüchel, A., & Priefert, H. (2002). Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstoniaeutropha H16. Applied and Environmental Microbiology, 68(9), 4315–4321.
69 Overhage, J., Steinbüchel, A., & Priefert, H. (2003). Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli. Applied and Environmental Microbiology, 69(11), 6569–6576.
70 Overhage, J., Steinbüchel, A., & Priefert, H. (2006). Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of Amycolatopsis sp. HR167. Journal of Biotechnology, 125(3), 369–376.
71 Pandey, A., Soccol, C. R., Nigam, P., Brand, D., Mohan, R., & Roussos, S. (2000). Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochemical Engineering Journal, 6(2), 153–162.
72 Paz, A., Carballo, J., Pérez, M. J., & Domínguez, J. M. (2016). Bacillus aryabhattai BA03: a novel approach to the production of natural value‐added compounds. World Journal of Microbiology and Biotechnology, 32(10), 159.
73 Perera, C. O., & Owen, E. (2010). Effect of tissue disruption by different methods followed by incubation with hydrolyzing enzymes on the production of vanillin from Tongan vanilla beans. Food and Bioprocess Technology, 3(1), 49.
74 Plaggenborg, R., Steinbüchel, A., & Priefert, H. (2001). The coenzyme A‐dependent, non‐β‐oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation in Delftia acidovorans. FEMS Microbiology Letters, 205(1), 9–16.
75 Plaggenborg, R., Overhage, J., Steinbüchel, A., & Priefert, H. (2003). Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440. Applied Microbiology and Biotechnology, 61(5–6), 528–535.
76 Plaggenborg, R., Overhage, J., Loos, A., Archer, J. A., Lessard, P., Sinskey, A. J., & Priefert, H. (2006). Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Applied Microbiology and Biotechnology, 72(4), 745.
77 Priefert, H., Rabenhorst, J., & Steinbüchel, A. (2001). Biotechnological production of vanillin. Applied Microbiology and Biotechnology, 56(3–4), 296–314.
78 Rabenhorst, J. (1996). Production of methoxyphenol‐type natural aroma chemicals by biotransformation of eugenol with a new Pseudomonas sp. Applied Microbiology and Biotechnology, 46(5), 470–474.
79 Rabenhorst, J., & Hopp, R. (2000). Process for the preparation of vanillin and suitable microorganisms. US Patent 6133003.
80 Rana, R., Mathur, A., Jain, C. K., Sharma, S. K., & Mathur, G. (2013). Microbial production of vanillin. International Journal of Biotechnology and Bioengineering Research, 4(3), 227–234.
81 Ranadive, A. S. (1994). Vanilla‐cultivation, curing, chemistry, technology and commercial products. Developments in food science. In: Charalambous, G. (ed). Spices, Herbs and Edible Fungi. pp 517–577. Elsevier, Amsterdam.
82 Rao, S. R., & Ravishankar, G. A. (2000). Biotransformation of protocatechuic aldehyde and caffeic acid to vanillin and capsaicin in freely suspended and immobilized cell cultures of Capsicum frutescens. Journal of Biotechnology, 76 (2–3), 137–146.
83 Ruiz‐Terán, F., Perez‐Amador, I., & López‐Munguia, A. (2001). Enzymatic extraction and transformation of glucovanillin to vanillin from vanilla green pods. Journal of Agricultural and Food Chemistry, 49 (11), 5207–5209.
84 Ryu, J. Y., Seo, J. Y., Lee, Y. S., Lim, Y. H., Ahn, J. H., & Hur, H. G., (2005). Identification of syn‐ and anti‐anethole‐2,3‐epoxides in the metabolism of trans‐anethole by the newly isolated bacterium Pseudomonas putida JYR‐1. Journal of Agriculture and Food Chemistry, 53, 5954–5958.
85 Shimoni, E., Ravid, U., & Shoham, Y. (2000). Isolation of a Bacillus sp. capable of transforming isoeugenol to vanillin. Journal of Biotechnology, 78(1), 1–9.
86 Shimoni, E., Baasov, T., Ravid, U., & Shoham, Y. (2003). Biotransformations of propenylbenzenes by an Arthrobacter sp. and СКАЧАТЬ