Biomolecular Engineering Solutions for Renewable Specialty Chemicals. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Biomolecular Engineering Solutions for Renewable Specialty Chemicals - Группа авторов страница 12

СКАЧАТЬ 24–26 bp away from the specific site.

      1.2.1.3 Ligases

      Ligases are considered to be molecular glue in rDT, used to join two DNA segments. It also has role in various aspects of molecular biology such as replication, recombination, and cloning. In the presence of ligase enzyme when two DNA fragments are mixed under a certain condition, base pairing between two fragments occur which results in sealing of two different DNA fragments to make a chimera (Pascal et al., 2004). It occurs due to covalent bonds formation between 2′‐PO4 group and 3′‐OH group of adjustment strands.

       1.2.1.3.1 Mechanism of Action

      1.2.1.4 DNA‐modifying Enzymes

       1.2.1.4.1 Alkaline Phosphatase

      Alkaline phosphatase prevents self‐ligation of DNA molecule (vectors and gene of interest) in genetic engineering experiment by dephosphorylating phosphate group on 3′ end of the DNA molecule. It is extracted from E. coli or calf intestine. The enzymes catalyze the hydrolysis of monoesters in phosphoric acid which can moreover catalyze a trans‐phosphorylation reaction with large concentrations of phosphate acceptors. It can be used to prevent self‐ligation of vectors in the cloning experiments because alkaline phosphate‐treated DNA fragments lack the 5′‐phosphophate in the terminal, required for the actions of DNA ligases (Tamás et al., 2002).

       1.2.1.4.2 T4 Poly Nucleotide Kinase

       1.2.1.4.3 Terminal Transferase

      Terminal deoxy‐nucleotidyl transferase [Terminal transferase (TdT)] has the capability to transfer or add polynucleotide in 3′ terminus of the DNA molecule. It is extracted from calf thymus. TdT is a template impartial polymerase that catalyzes the addition of deoxynucleotides to the 3′ hydroxyl terminus of DNA molecules with none template strand. In rDT, blunt‐ended DNA strands are required every now and then to make it cohesive via the addition of nucleotides at 3′ of one strand (Greider and Blackburn, 1985)

       1.2.1.4.4 Topoisomerases

      Topoisomerases change the affirmation of covalently closed circular DNA molecule, such as plasmids with the aid of removing the supercoils present in the round DNA molecule and alternate the linking number. It performs a major role in replication and transcription when the DNA unwinds, doing away with positive and negative supercoils (Liu, 1989).

      1.2.2 Vectors

      A vector is a DNA molecule, which act as molecular transporter, that can replicate autonomously in an appropriate host cell and into which the gene of interest (a foreign gene) is inserted. Insertion of a foreign gene into the vector is aiming either to get numerous copies of the gene of interest or obtaining a product from this gene. Vector is basically of two types: cloning vector and expression vector. Characteristics of an ideal cloning vector are mentioned below:

      1 It should have origin of replication, able to replicate autonomously.

      2 It should be easily isolated and purified.

      3 The vector should have suitable selection marker genes that will allow easy selection of the transformed cells from nontransformed cells.

      4 For gene transfer, vector should have the ability to integrate either itself or the DNA insert it carries into the genome of the host cell.

      5 The cells transformed with the vector containing the DNA insert should be easily identifiable and selectable from those transformed cells having unaltered vector.

      6 Unique restriction digestion sites should be present where gene of interest can be inserted.

      Number of cloning vectors are also present which includes plasmid, cosmid, phage vectors, bacterial artificial chromosomes (BACs), and yeast artificial chromosomes (YACs). All the vectors mentioned have different incorporation capacity for foreign DNA. Plasmids are extra chromosomal circular double‐stranded DNA replicating elements present in bacterial cells. Plasmids size is ranging from 5.0 to 400 kb. Plasmids are inserted into bacterial calls by a transformation. Plasmids can incorporate an insert size of up to 10 kb DNA fragment. Bacteriophage infects bacteria and has a very unique mechanism for delivering its genome into bacterial cell. Hence, it can be used as a cloning vector for larger DNA segments insertion. Phage vectors can insert DNA fragments of size up to 20 kb. BACs are simple plasmid vectors that are designed to integrate large DNA fragments of size 75–300 kb (Kim et al., 1996b). BACs have antibiotic resistance marker genes and a very stable OriC that promotes the distribution of plasmid after bacterial cell division and maintaining the plasmid copy number to one or two СКАЧАТЬ