Genetic Analysis of Complex Disease. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Genetic Analysis of Complex Disease - Группа авторов страница 15

Название: Genetic Analysis of Complex Disease

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Биология

Серия:

isbn: 9781119104070

isbn:

СКАЧАТЬ our understanding of alleles and genetic linkage, described later. Mendel’s observations remain one of the most important contributions of critical descriptive science in the history of genetics.

      Hardy–Weinberg Equilibrium

image image
Recall that p + q = 1 and p2 + 2pq + q2 = 1 Example 1. Cystic fibrosis (CF), an autosomal recessive disease, has an incidence of 1 in 3200. What is the frequency of CF carriers in the general population?The population frequency of the disease (1 in 3200) is represented by q2In order to calculate the frequency of the carrier state (2pq), one must first determine q q = √(1/3200) = 1/57 Since p + q = 1, p = 56/57 The frequency of CF carriers is calculated as 2pq = 2(1/57)(56/57) = 1/29, or 0.0344. Example 2. The frequency of the allele (q) for an autosomal dominant disorder in 1/100. What is the frequency of the disease itself in the population?Since the frequency of the disease allele in 1/100, the frequency of the normal allele (p) = 1 − 1/100 = 99/100.Since the disease is dominant, both heterozygous carriers and homozygous individuals are affected with the disease: 2pq + q2 = 2(99/100)(1/100) + (1/100)2 = 0.0199 Example 3. An autosomal dominant disorder with incomplete penetrance (f) has a population prevalence of 16/1000. If the allele frequency for the normal allele (p) is 0.99, what is the estimated penetrance of the disease allele?Since p = 0.99, then q = 0.01As in Example 2, both heterozygous and homozygous gene carriers are affected (assuming no difference in penetrance) between homozygotes and heterozygotes. Therefore, f(q2) + f(2pq) = 0.016 f(q2 + 2pq) = 0.016 f((0.01)2 + 2(0.99)(0.01)) = 0.016 f(0.0199) = 0.016 f = 0.804

      Structure of DNA

      When Mendel described the unit of inheritance, he did not know the underlying biological factor. It was 90 years later when the actual genetic molecule was identified. The fundamental unit of inheritance that Mendel’s work uncovered was later termed “the gene.” A gene contains the information for synthesizing proteins necessary for human development, cellular and organ structure, and biological function. DNA is the molecule that comprises the gene and encodes information for synthesizing both proteins and ribonucleic acid (RNA). DNA is present in the nucleus of virtually every cell in the body. It is made up of three components: a sugar, a phosphate, and a base. In DNA, the sugar is deoxyribose, whereas in RNA, the sugar is ribose. The four bases in DNA are the pyrimidines adenine (A) and guanine (G) and the purines cytosine (C) and thymine (T). A DNA sequence is often described as an ordered list of bases, each represented by the first letter of its name (e.g. ACTGAAACTTGATT). A nucleoside is a molecule made of a base and a sugar; a nucleotide is made by adding a phosphate to a nucleoside.

      A single strand of DNA is a polynucleotide, consisting of nucleotides bonded together. A single strand of DNA is, however, unstable. The double‐helical nature of DNA, which confers stability to the molecule, was hypothesized in 1953 by J. D. Watson and F. H.C. Crick. Their cohesive theory of the structure of DNA accounted for some of the previously identified properties of DNA (Watson and Crick 1953).

image

      (Source: Reprinted by permission from Thompson et al. (1991).)

      While some of the DNA in a cell codes for a protein product, the vast majority of the DNA sequence does not carry information for the formation of a protein. Within a gene, exons are the portions utilized to make proteins. Introns are the sequences between exons that do not code for the final protein product. The size and number of introns and exons vary dramatically between genes.