Computational Intelligence and Healthcare Informatics. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Computational Intelligence and Healthcare Informatics - Группа авторов страница 20

Название: Computational Intelligence and Healthcare Informatics

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119818694

isbn:

СКАЧАТЬ

      The problem of poor alignment and noise in non-lesion area of CXR images which hinders the performance of network is overcome by building three branch attention guided CNN which is discussed in [20]. It helps to identify thorax diseases. Here, AGCNN is explored which works in the same manner as radiologist wherein ResNet50 is the backbone of AGCNN. Radiologist first browse the complete image and then gradually narrows down the focus on small lesion specific region. AGCNN mainly focus on small local region which is disease specific such as in case of Nodule. AGCNN has three branches local branch, global branch, and fusion branch. If lesion region is distributed throughout the image, then the pathologies which were missed by local branch in terms of loss of information such as in case of pneumonia were captured by global branch. Global and local branches are then fuse together to fine tune the CNN before drawing final conclusion. The training of AGCNN is done in different training orders. G_LF (Global branch then Local and Fusion together), GL_F (Global and Local together followed by Fusion), GLF all together, and then G_L_F (Global, Local and Fusion separately) one after another.

      A multiple instance learning (MEL) assures good performance of localization and multi-classification albeit in case of availability of less number of annotated images is discussed in [37]. Latest version of residual network pre-act-ResNet [22] has been employed to correctly locate site of disease. Initially, model is allowed to learn information of all images, namely, class and location. Later, input annotated image is divided into four patches and model is allowed to train for each patch. The learning task becomes a completely supervised problem for an image with bounding box annotation, since the disease mark for each patch can be calculated by the overlap between the patch and the bounding box. The task is formulated as a multiple-instance learning (MIL) problem where at least one patch in the image belongs to that disease. All patches have to be disease-free if there is no illness in the picture.

      Considering orientation, rotation and tilting problems of images, hybrid deep learning framework, i.e., VDSNet by combining VGG, data augmentation, and spatial transformer network (STN) with CNN for detection of lung diseases such as asthma, TB, and pneumonia from NIH CXR dataset is presented in [7]. The comparison is performed with CapsNet, vanilla RGB, vanilla gray, and hybrid CNN VGG and result shows that the VDSNet achieved better accuracy of 73% than other models but is time consuming. In [67], a technique of using predefined deep CNN, namely, AlexNet, VGG16, ResNet18, Inception-v3, DenseNet121 with weights either initialized from ImageNet dataset or initialized with random values from scratch is adopted for classification of chest radiographs into normal and abnormal class. Pretrained weights of ImageNet performed better than random initialized weights from scratch. Deeper CNN works better for detection or segmentation kind of task rather than binary classification. ResNet outperformed training from scratch for moderate sized dataset (example, 8,500 rather than 18,000).

      Thoracic pathology detection not only restricted from CXR images but can also be done from video data of lung sonography. Deep learning approach for detection of COVID-19–related pathologies from Lung Ultrasonography is developed in [51]. By applying the facts that the augmented Lung Ultrasound (LUS) images improve the performance of network [62] in detecting healthy and ill patient and keeping consistencies in perturbed and original images, hence robust and more generalized network can be constructed [52, 55]. To do so, Regularized Spatial Transformer Network (Reg-STN) is developed. Later, CNN and spatial transformer network (STN) are jointly trained using ADAMS optimizer. Network lung sonography videos of 35 patients from various clinical centers from Italy were captured and then divided into 58,924 frames. The localization of COVID-19 pathologies were detected through STN which is based on the concept that the pathologies are located in a very small portion of image therefore no need to consider complete image.

      A three-layer Fusion High Resolution Network (FHRNet) has been applied for feature extraction and fusion CNN is adopted for classifying pathologies in CXR is presented in [26]. FHRNet helped in reducing noise and highlighting lung region. Moreover, FHRN has three branches: local feature extraction, global feature extraction, and feature fusion module wherein local and global feature extraction network finds probabilities of one of the 14 classes. Input given to local feature extractor is a small lung region obtained by applying mask generated from global feature extractor. Two HRNets are adjusted to obtain prominent feature from lung region and whole image. HRNet is connected to global feature extraction layer through feature fusion layer having SoftMax classifier at the end which helps in classifying input image into one of the 14 pathologies. Another deep CNN consisting of 121 layer is developed to detect 5 different chest pathologies: Consolidation, Mass, Pneumonia, Nodule, and Atelectasis [43] entropy, as a loss function is utilized and achieved better AUC-ROC values for Pneumonia, Nodule, and Atelactasis than the model by Wang et al. [70].